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Chapter 1
Introduction

Metamaterials are artificial, engineered materials consisting of periodic arrange-
ments of sub-wavelength unit cells, whose electromagnetic properties are primarily
determined by their structure. Such artificially fabricated particles are able to gen-
erate an electromagnetic response that can be tailored independently for the electric
and magnetic component of a wave. Hence, a periodic arrangement of these particles
can be treated as an effective material described by a set of material parameters.
This allows to create electromagnetic responses at a desired frequency that are not
possible with naturally available materials. For example, at microwave frequencies
the variety of magnetic materials is very limited. However, a magnetic response can
be mimicked by using periodic arrangements of metallic rings.

The description of artificial materials or artificial dielectrics by use of the effec-
tive refractive index has been established by Kock when designing radio frequency
(RF) lenses consisting of metal stripes [1]. A first description of the effective mate-
rial parameters of wire lattices with negative effective permittivity (artificial plas-
mas) has been done by Rotman [2]. In 1968, Veselago [3] theoretically considered
double-negative materials with simultaneously negative permeability and permit-
tivity exhibiting a negative phase velocity. Although this is physically possible, no
natural material with a negative permeability and permittivity at the same frequency
exists. After 30 years, the topic has been revised by Pendry et al. [4, 5] by character-
izing the RF response of lattices of wires and rings. These works were the basis for
the first experimentally confirmed medium with simultaneously negative effective
permittivity and permeability by Smith et al. [6].

Direct manipulation of non-guided waves can be realized with three-dimensional
metamaterials. The two basic elements for non-planar metamaterials are wires and
split-ring resonators. A wire lattice parallel to the electric field component of an
incident plane wave creates a Drude or Lorentz response for the effective permittivity
[4] while split-ring resonators perpendicular to the magnetic field component create
a Lorentz response for the effective permeability [5]. These elements are the basis for
configurations that can be fabricated at microwave frequencies and with variations
up to optical frequencies. With parallel gold nanorods [7] or the fishnet [8, 9], a
double-negative response has been demonstrated in the infrared region.
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2 1 Introduction

These three-dimensional unit elements allow the implementation of gradient-
indexmetamaterials [10] and complex electromagnetic transformations like cloaking
[11] or beam steering [12]. By exploiting voltage tunable materials and components,
the spatial distribution of effectivematerial parameters can be reconfigured.With this,
artificial lenses with a tunable phase response, e.g. to change the focal point or the
radiation direction, can be implemented. Since the electric andmagnetic response can
bemanipulated independently of each other, the phase distribution of a gradient-index
metamaterial can be tuned while keeping its impedance constant. Very promising for
the implementation of such tunable metamaterials are liquid crystal materials since
investigations of dedicated microwave mixtures have shown suitable properties in
terms of tunability and losses for frequencies up to at least 4 THz [13, 14].

Manipulation of guided waves is possible with transmission line metamaterials
[15–17], where dispersion characteristics can be tailored by loading a host trans-
mission line with lumped elements. Applications of non-resonant transmission line
metamaterials include leaky-wave antennas [18, 19], small antennas [20], phase
shifters [21, 22], and delay lines [23, 24]. By loading the host transmission line
with resonant structures such as split-ring resonators and its variations, miniaturized
components like compact filters [25–27] and phase shifters [28] can be realized.

A general aim of the metamaterial theory is the use of dispersion parameters such
as effectivematerial parameters, orwavenumber andBloch impedance to describe the
response of a periodic arrangement of unit cells to an incident wave. These dispersion
parameters are obtained from the geometry of a single unit cell. One reason for that
is to increase the simulation efficiency: often, the electromagnetic simulation of a
large, three-dimensional configuration which consists of unit cells with a high level
of details is time consuming or even impossible due to computational constraints.
Based on the analysis of scattered waves or on the determination of propagating
eigenmodes and the corresponding field distribution, different methods exists to
predict the response of a complex array from the simulation of a single unit cell.
Furthermore, since the electromagnetic response of a unit cell and periodic array is
described by a set of dispersion parameters and not by the local distribution of electric
andmagnetic fields inside the unit cell, concepts like transmission line transformation
can be applied independent of the actual physical implementation of the unit cell.
However, effects like spatial dispersion and higher order mode propagation have to
be taken into account.

In thiswork, the concept ofmetamaterials, where thewave propagation in periodic
lattices is described by a set of dispersion parameters, is applied to design voltage
tunable microwave components. These include artificial transmission lines with tun-
able properties for applications such as phase shifters, filters, and planar leaky-wave
antennas. Furthermore, voltage tunable three-dimensional unit cells for free-space
applications are designed. Their applicability is demonstratedwith a tunable artificial
gradient-index lens which permits an adaptive scanning of an incident beam. Aspects
such as impact of discretization or physical realizability are considered and their
effect on the dispersion properties is investigated for general discrete periodic con-
figurations. Due to the large simulation effort for large arrays with small geometrical
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details, methods for prediction of large arrays based on the simulation of a single
unit cell are presented and compared with existing methods.

Thesis Outline

In the present work, tunable transmission line metamaterials and three-dimensional
metamaterial configurations for microwave frequencies are designed, investigated,
and manufactured. In Chap. 2, the connection between wave propagation in con-
ventional materials and periodic structures is demonstrated and transmission line
models for different dispersion models are derived. Furthermore, the impact of phys-
ical restrictions such as causality and a finite unit cell size are considered for the
transmission line model and dispersion parameters.

In Chap.3, implementations of three dimensional metamaterials and their unit cell
configurations are presented. The investigated particles are continuous and cut wires
as well as split-ring resonators. Additionally, the transmission line circuit to describe
the propagation of different modes in rectangular hollow waveguides is derived.

Since it is desired to describe periodic structures with dispersion parameters like
wavenumber and Bloch impedance or with effective material parameters, Chap.4
introduces different methods for the extraction of these parameters from arbitrary
geometries and circuits. These methods are based on the simulation of scattering
parameters for one or multiple modes, or on the field distribution of propagating
eigenmodes. Furthermore, a farfield predictionmethod, that uses the eigenmode field
distribution to obtain detailed information about the radiation properties, is derived.

In Chap.5, different voltage tunable transmission line metamaterials are outlined.
The concept of artificial transmission lines with tunable properties is demonstrated
by employing semiconductor varactors as well as liquid crystal varactors. Further-
more, an artificial transmission line with independently voltage tunable electric and
magnetic response in the Ka-band is demonstrated.

Consequently, in Chap.6, the previously set out principles are used to design and
implement voltage tunable artificial lenses for beam scanning applications. Voltage
tunability is applied to different three-dimensional metamaterial geometries and their
properties are investigated. Finally, a voltage tunable fishnet metamaterial infiltrated
with liquid crystal and its beam scanning capabilities are demonstrated in the Ka-
band.

The presented thesis is finalized with a conclusion of the work and its results
followed by an outlook to future research based on the presented results.
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Chapter 2
Wave Propagation in Periodic Structures

Wave propagation in periodic structures is closely related to propagation of waves
in continuous media. Thus, dispersion parameters such as wavenumber and wave
impedance or permeability and permittivity, can be used to describe the propaga-
tion of waves in one-dimensional periodic structures like loaded or artificial trans-
mission lines and waveguides, and in two- and three-dimensional structures like
artificial lenses, transmit arrays and meta surfaces. In this chapter, the connection
between transmission line theory and effective material parameters, that can be used
to describe the propagation of waves in periodic lattices, is investigated. Further-
more, based on a general form of a transmission line model and effective material
parameters, a physical limitation for dispersion characteristics and corresponding
equivalent circuit are derived. Finally, the effect of discretization and finite unit cell
size in periodic structures on effective material parameters is considered.

2.1 Material Parameters of Distributed Periodic Structures

The propagation of a wave in a charge free material can be described by Maxwell’s
equations which in the frequency domain are [1]

ˆ
∂ A

E(r, ω)ds = −
ˆ

A
jωB(r, ω)dA ⇔ rot E(r, ω) = − jωB(r, ω), (2.1)

ˆ
∂ A

H(r, ω)ds =
ˆ

A
jωD(r, ω)dA ⇔ rot H(r, ω) = jωD(r, ω), (2.2)

ˆ
∂V

D(r, ω)dA = 0 ⇔ divD(r, ω) = 0, (2.3)
ˆ

∂V
B(r, ω)dA = 0 ⇔ divB(r, ω) = 0 (2.4)
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8 2 Wave Propagation in Periodic Structures

with the material equations of a linear material

B(ω) = μ0 [M(ω) + H(ω)] = μ0
[ ¯̄χm(ω) + 1

]
H(ω) = ¯̄μ(ω)H(ω), (2.5)

D(ω) = ε0E(ω) + P(ω) = ε0
[ ¯̄χe(ω) + 1

]
E(ω) = ¯̄ε(ω)E(ω). (2.6)

Under the condition of an isotropic and homogeneous material, the material tensor
¯̄μ(r, ω) and ¯̄ε(r, ω) reduce to scalar values and (2.1)–(2.4) can be combined to the
Helmholtz equation

{
ΔE(r, ω)

ΔH(r, ω)

}
− k2(ω)

{
E(r, ω)

H(r, ω)

}
= 0 (2.7)

describing propagation in materials with the complex material properties μ and ε

and the complex wavenumber

k(ω) = ±ω
√

μ(ω)ε(ω). (2.8)

The electric and magnetic field are related by the wave impedance Zw so that

H(r, ω) = 1

Zw(ω)
· k

|k| · S
|S| × E(r, ω) (2.9)

with S/|S| being the unit vector pointing in the direction of the energy flux of the
wave. Hence, the wave impedance becomes

Zw(ω) = ±
√

μ(ω)

ε(ω)
. (2.10)

Similarly, the propagation of waves on a transmission line in z-direction is deter-
mined by [2]

∂

∂z

{
V (z, ω)

I (z, ω)

}
− Z ′

se(ω)Y ′
sh(ω)

{
V (z, ω)

I (z, ω)

}
= 0 (2.11)

where the per unit length impedance and admittance Z ′
se and Y ′

sh are defined as in the
equivalent circuit of an infinitesimal short transmission line section in Fig. 2.1. The
propagation constant

γ = α + jβ = ±
√

Z ′
se(ω)Y ′

sh(ω) (2.12)

and the characteristic impedance

Zc = ±
√

Z ′
se(ω)

Y ′
sh(ω)

. (2.13)
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Fig. 2.1 Infinitesimal short
transmission line section

Z′
se/2

Y ′
sh

Z′
se/2I(z)

V (z)

Δz → 0

V (z+Δz)

I(z+Δz)

are used to describe the wave propagation on transmission lines.
Due to the equivalence between the wave equations and the impedance definition

of the plane wave propagation and the propagation on the transmission line it can be
defined

Z ′
se(ω) = lim

Δz→0

Zse(ω)

Δz
= jωμeff(ω), (2.14)

Y ′
sh(ω) = lim

Δz→0

Ysh(ω)

Δz
= jωεeff(ω), (2.15)

i.e. the material parameters μ, ε and transmission line elements Z ′
se, Y ′

sh are mathe-
matically equivalent [3, 4]. Since the resultingmaterial parameters are not necessarily
the parameters of an existing material, but describe the response of a periodic struc-
ture to the propagating electric and magnetic field of an arbitrary wave, they are
denoted as effective material parameters μeff and εeff.

Propagation of a planewave in amaterial can be described by the transmission line
equivalent circuit in Fig. 2.1. On the other hand, wave propagation on a transmission
line can be described by a wave propagating in an effective material with μeff and
εeff. Hence, by adjusting the series impedance Z ′

se and the shunt admittance Y ′
sh,

the frequency characteristic of the magnetic and electric response can be designed
independently of each other for the case of a guided wave on a transmission line as
well as for propagation of plane waves.

2.2 Dispersion Functions and Transmission Line Model

The Lorentz model, a damped mechanical oscillator model, represents an accurate
description of lossy dielectric materials with resonant or relaxation effects, plas-
mas, or lossy metals and semiconductors with free charges. This classical quantum-
mechanical dispersion model is based on the motion of electrons with the charge e
and the mass me [1]

ε(ω) = ε0

(

1 − Nme2

ε0me

∑

i

Ai

ω2 − ω2
0εi − jωδεi

)

, with
∑

i

Ai = Ne (2.16)
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Fig. 2.2 Transmission line
model of a Lorentz–Lorentz
material L′

se0/2

L′
se1/2

2C′
se1

2G′
se1

L′
se1/2

2G′
se1

2C′
se1

L′
se0/2

C′
sh1

L′
sh1

R′
sh1

C′
sh0

where Nm is the number ofmolecules per unit volumewith Ne electrons permolecule,
ω0εi is the resonance frequency, and δεi the collision frequency or damping factor.

Setting ω0ε = 0 yields the Drude dispersion, e.g. of metals or plasmas with free
electric charges [5]. On the contrary, the Debye dispersion where the collision fre-
quency is in the range of the resonance frequency δε ≈ ω0ε describes relaxation
effects, e.g. in dielectric or liquid materials [1]. The summation takes into account
that a material can exhibit different resonance and relaxation effects based on dif-
ferent charges and their dipole moment. A material dispersion represented by the
Lorentz equation is always causal since it is derived from a mechanical model that
is per se causal [6].

With (2.14) and (2.15) it is possible to translate the Lorentz dispersion relation
(2.16) into a transmission line model as in Fig. 2.1. For a single resonance of the
permeability and permittivity, Fig. 2.2 shows a possible configuration of a transmis-
sion line model that yields a Lorentz dispersion for the effective permeability and
permittivity. With (2.14) and (2.15), the effective material parameters become

μeff(ω) = μ∞
ω2 − ω2

tμ − jωδμ

ω2 − ω2
0μ − jωδμ

, (2.17)

εeff(ω) = ε∞
ω2 − ω2

tε − jωδε

ω2 − ω2
0ε − jωδε

, (2.18)

which is a rearranged form of (2.16) with a pole and a zero in the complex omega
plane at

ωpole = j
δ

2
±

√

ω2
0 − δ2

4
(2.19)

and

ωzero = j
δ

2
±

√

ω2
t − δ2

4
. (2.20)
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Fig. 2.3 Effective material
parameters of a
Lorentz–Lorentz material
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ef
f/
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0

μ ′
eff/μ0, ε ′

eff/ε0
μ ′′
eff/μ0, ε ′′

eff/ε0

The resonance frequency ω0, the transition frequency ωt, and the damping factor
δ are determined by the element values:

ω2
0μ = 1

L ′
se1C

′
se1

, ω2
tμ = ω2

0μ + 1

L ′
se0C ′

se1

, δμ = Gse1

Cse1
, μ∞ = L ′

se0, (2.21)

ω2
0ε = 1

L ′
sh1C

′
sh1

, ω2
tε = ω2

0ε + 1

L ′
sh1C

′
sh0

, δε = Rsh1

Lsh1
, ε∞ = C ′

sh0. (2.22)

Here, losses are assigned to the series capacitance C ′
se and the shunt inductance L ′

sh.
However, losses in form of a series or parallel resistance can be added to each reactive
element in the model which has an impact on the Lorentz parameters but not on the
general dispersion equation.

Figure2.3 shows the resulting complex effective material parameters for ωt =
1.5ω0 and δ = 0.1ω0. At the resonance frequency ω0, due to the pole, the real part
becomes very large with a change of the sign so that between the resonance and the
transition frequency ωt, the real part is negative. Furthermore, the imaginary part,
i.e. the loss, has its maximum at the resonance frequency and stays significant in the
negative region above the resonance frequency.

In the quantum-mechanical model described by (2.16), charges that are bound in
the material, e.g. in a lattice, yield a resonance effect as in the Lorentz dispersion.
If these charges are not bound but can move freely (only limited by losses, e.g.
by collisions), the resonance frequency shifts to zero yielding the Drude dispersion
model with

μeff(ω) = μ∞
ω2 − ω2

pμ − jωδμ

ω2 − jωδμ

, (2.23)

εeff(ω) = ε∞
ω2 − ω2

pε − jωδε

ω2 − jωδε

. (2.24)

It exhibits complex poles and zeros at

ωpole1 = 0, ωpole2 = jδ (2.25)
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Fig. 2.4 Transmission line
model of a Drude–Drude
material
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Fig. 2.5 Effective material
parameters of a
Drude–Drude material
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0

μ ′
eff/μ0, ε ′

eff/ε0
μ ′′
eff/μ0, ε′′

eff/ε0

and

ωzero = j
δ

2
±

√

ω2
p − δ2

4
. (2.26)

These dispersion properties can be translated into the transmission line model in
Fig. 2.4 so that

ω2
pμ = 1

L ′
se0C ′

se1

, δμ = Gse1

Cse1
, μ∞ = L ′

se0, (2.27)

ω2
pε = 1

L ′
sh1C

′
sh0

, δε = Rsh1

Lsh1
, ε∞ = C ′

sh0. (2.28)

For δ = 0.1ωp, the effective material parameters are shown in Fig. 2.5. For frequen-
cies below the plasma frequencyωp, the real part is negative and continuously increas-
ing while above ωp it is positive. Compared to the Lorentz dispersion, the region of a
negative real part is much wider due to the shift of the resonance frequency to zero.
Furthermore, the loss is increasing for lower frequencies and has its maximum at
zero.

The translation of the dispersion equation (2.16) into a transmission line model
is not unambiguous if it exhibits one or more non-zero resonances or poles, i.e. the
translation of (2.17) and (2.18) yields more than a single solution. Table2.1 shows
the series impedance Z ′

se and shunt admittance Y ′
sh for the lossless case

1 δμ = δε = 0
to model the Lorentz and Drude dispersion with a transmission line model (2.16). It

1Losses can be taken into account by adding a resistance to each necessary reactive element, yielding
δ > 0.
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Table 2.1 Series and shunt
branch impedances (without
losses) which create a Drude
and Lorentz dispersion

L′
1

C′
0

L′
2

C′
1L′

1

L′
1

C′
1

L′
0

L′
0

C′
1

C′
0

C′
1L′

1

L′
1

C′
1

C′
2

series branch Z′
se → μeff shunt branch Y ′

sh → εeff

Drude:

Lorentz:

Dispersion model

A = L′
0

ω2
0 = 1

L′
1C′

1

ω2
t = ω2

0 +
1

L′
0C′

1

A =C′
0

ω2
0 = 1

L′
1C′

1

ω2
t = ω2

0 +
1

L′
1C′

0

A = L′
0

ω2
p = 1

L′
0C′

1

A =C′
0

ω2
p = 1

L′
1C′

0

μeff,εeff = A ω2−ω2
t

ω2−ω2
0

μeff,εeff = A
ω2−ω2

p

ω2

A = L′
1L′

2
L′
1+L′

2

ω2
0 = 1

(L′
1+L′

2)C
′
1

ω2
p = 1

L′
1C′

1

ω2
0 = 1

L′
1(C

′
1+C′

2)

ω2
p = 1

L′
1C′

1

A = C′
1C′

2
C′
1+C′

2

ω2
0 = 0 ω2

0 = 0

can be seen that the Lorentz dispersion yields two solutions for each, the series and
shunt branch, while the solution for the Drude dispersion is unambiguous.

With the effective material parameters, the wavenumber (2.8) can be determined.
The sign of the square root determines, whether the phase is propagating in forward
or backward direction with parallel or anti-parallel2 wave vector k and Poynting
vector S, respectively, so that

k

|k| · S
|S| = ±1. (2.29)

A positive product μ′
effε

′
eff yields forward propagation whereas for backward prop-

agation, i.e. for a negative product, (2.29) becomes negative [8]. Hence, with the
wavenumber (2.8), the phase velocity

vp = ω

Re{k(ω)} (2.30)

can take positive and negative values. However, for small losses

2In a two- or three-dimensonal anisotropic material, the angle between the Poynting vector and
wave vector can have arbitrary values [7].
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μ′′
eff

μ′
eff

,
ε′′
eff

ε′
eff

� 1 (2.31)

the group velocity

vg = ∂ω

∂Re{k} (2.32)

corresponds to the energy velocity ve which always has to be positive.
The transmission line model and (2.14) and (2.15) indicate that the effective

material parameters can be set independently of each other. Hence, arbitrary config-
urations of the series and shunt branch are possible to create a required dispersion
characteristic. In Sect. 2.4 it will be shown that this separation of the magnetic and
electric response is only possible for an infinitesimal short transmission line section.

2.3 Causality and Its Consequences on Dispersion

In the previous section, the quantum-mechanical Lorentz model, and hence, a phys-
ically realizable model, was used to find the transmission line model of materials
and metamaterials with dispersive characteristics. In this section, realizability of a
transmission line model is investigated directly by taking the concept of stability and
causality into account.

The effective material parameters of an arbitrary medium can be described by its
magnetic and electric susceptibility χm(ω) and χe(ω) so that

μeff(ω) = μ′
eff − jμ′′

eff = − j
Z ′
se(ω)

ω
= amμ0 [χm(ω) + 1] , (2.33)

εeff(ω) = ε′
eff − jε′′

eff = − j
Y ′
sh(ω)

ω
= aeε0 [χe(ω) + 1] , (2.34)

where am and ae account the field distribution of the propagating wave different from
a plane wave, e.g. if the host medium is a microstrip transmission line or a hollow
wave guide. For plane wave propagation in vacuum am = ae = 1. The susceptibility
describes the polarization and magnetization of a material, i.e. in time domain the
response to an external electric or magnetic field [9]

M(t) = χm(t) ∗ H(t) = [
χ ′

m(t) − jχ ′′
m(t)

] ∗ H(t), (2.35)

P(t) = ε0χe(t) ∗ E(t) = [
χ ′

e(t) − jχ ′′
e (t)

] ∗ E(t). (2.36)
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Since investigation of causality and dispersion is equivalent for the magnetic and
electric susceptibility, the general susceptibility χ(t) with its Fourier transform

χ(ω) = F{χ(t)} = 1

2π

ˆ ∞

−∞
χ(t)e− jωtdt (2.37)

is used for both quantities.
Without an external field, the considered material does not exhibit a polarization

or magnetization. Hence, the time response χ(t) has to vanish for negative times
which is a general condition for a causal system [10]. According to Titchmarsh’s
theorem [11, 12], if the square integrability

ˆ ∞

−∞
|χ(ω)|2dω ≤ C < ∞ (2.38)

is fulfilled, i.e. the total energy within the system is bounded and cannot be infinitely
large [10], the following statements are equivalent, and if one of the conditions is
met, all others are automatically fulfilled:

(i) the time response of the susceptibility vanishes for negative times:

χ(t) = 0 ∀ t < 0, (2.39)

(ii) the real and imaginary part of the frequency response are connected by the
Hilbert transform

χ(ω) = − jH{χ(ω)} = − j

π

 ∞

−∞
χ(Ω)

ω − Ω
dΩ, (2.40)

(iii) the frequency response χ(ω) is analytic in the lower half of the complex ω

plane.

All three conditions distinguish a causal time response χ(t) under the condition of
bounded energy (2.38). If χ(t) is a purely real time response (which is the case for
a physical realizable time response), it can be split up into a real even and real odd
part which yields together with (i) and the symmetry of the Fourier transform [9, 13]

χ(−ω) = χ∗(ω). (2.41)

Thus, for a causal response, the real part χ ′(ω) has to be an even function while
the imaginary part −χ ′′(ω) has to be an odd function over frequency. With that, the
integration in (2.38) is symmetric and

ˆ ∞

−∞
|χ(ω)|2dω = 2

ˆ ∞

0
|χ(ω)|2dω ≤ C < ∞. (2.42)

To fulfill the bounded energy criterion (2.42) the susceptibility has to vanish in
the high frequency limit so that
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lim
ω→∞ χ(ω) = 0. (2.43)

Hence, with (2.33) and (2.34) the effective material parameters have to follow

μ∞ = lim
ω→∞ μeff = lim

ω→∞
Z ′
se(ω)

jω
= amμ0 := L ′

0, (2.44)

ε∞ = lim
ω→∞ εeff = lim

ω→∞
Y ′
sh(ω)

jω
= aeε0 := C ′

0, (2.45)

so that at high frequencies the wave propagation is determined only by the host
medium with

L ′
0 = amμ0 > 0, (2.46)

C ′
0 = aeε0 > 0. (2.47)

Consequently it is not possible to realize arbitrary unit cell configurations. Instead,
the unit cell has to consist of at least a series inductance and shunt admittance which
do not vanish in the high frequency limit.

Based on that, the series and shunt branch of a general unit cell can be described
as shown in Fig. 2.6 by the distributed complex impedance and admittance

Z ′
se(ω) = 1

Y ′
seM + 1

Z ′
seM +··· 1

Y ′
se2+ 1

Z ′
se2+ 1

Y ′
se1+ 1

Z ′
se1+ jωL′

0

, (2.48)

Y ′
sh(ω) = 1

Z ′
shN + 1

Y ′
shN +··· 1

Z ′
sh2+ 1

Y ′
sh2+ 1

Z ′
sh1+ 1

Y ′
sh1+ jωC ′

0

, (2.49)

with the non-zero elements L ′
0 and C ′

0. Furthermore, in the high frequency limit, the
impact of all elements except L ′

0 and C ′
0 has to vanish, i.e.

Fig. 2.6 Series and shunt
branch impedance and
admittance including the
minimal required elements
L ′
0 and C ′

0 in the series and
shunt branch

C′
0

Y ′
sh1

Z′
sh1

Y ′
sh2

Z′
shN

L′
0 Z′

se1

Y ′
se1

Z′
se2

Y ′
se2

Z′
seM

Y ′
seM

Y ′
shN

Z′
sh2
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lim
ω→∞

Z ′
n(ω)

jω
= lim

ω→∞
Y ′

n(ω)

jω
= 0. (2.50)

Z ′
n and Y ′

n are not restricted to purely reactive elements but can also contain resistive
elements as long as the high frequency condition (2.44) and (2.45) is fulfilled.

Although other topologies for Z ′
se and Y ′

sh are possible, the high frequency condi-
tion (2.44) and (2.45), which ensures the square integrability (2.42), has to hold for
any topology.

2.3.1 Application to Different Unit Cell Configurations

Different unit cell configurations exist to realize a desired dispersion characteristic.
If investigated over frequency, not all of them follow (2.44) and (2.45). Thus, not all
unit cell configurations fulfill the bounded energy criterion (2.38) and are physically
realizable. By using condition (2.43) it is possible to find the physical equivalent
circuit of arbitrary unit cell topologies or to test a given unit cell configuration for its
realizability and to investigate its high frequency response.

As an example, below, different common unit cell configurations are investigated
in terms of causality and their physical realizability.

Microstrip Transmission Line

Amicrostrip transmission line on a Rogers Duroid 5880 substrate with a copper met-
allization with a thickness of 17µm and the dimensions as shown in Fig. 2.7a yields
a characteristic impedance Zc = (50.16 − j84.66 × 10−9)
 and a phase constant
γ = (0.1456 + j290.8)m−1 at a frequency of 10GHz.

With (2.12) and (2.13) the distributed unit cell elements become

Z ′
se = γ · Zc = 7.304
/m + jω0.184μ0, (2.51)

Y ′
sh = γ /Zc = 2.903 × 10−3S/m + jω10.42ε0. (2.52)

This corresponds to the transmission line equivalent circuit in Fig. 2.7b with a con-
stant per unit length resistance and inductance in the series branch and a constant

εr = 2.16, tanδ = 0.001

5.1mm

1.575mm

L′
se/2

C′
sh

R′
se/2 L′

se/2 R′
se/2

G′
sh

(a) (b)

Fig. 2.7 Investigated microstrip transmission line: a Cross-section view, b transmission line equiv-
alent circuit
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per unit length conductance and capacitance in the shunt branch as expected from
transmission line theory. Hence, (2.44) and (2.45) yield the high frequency limit

μ∞ = lim
ω→∞

(
R′
se

jω
+ L ′

se

)
= L ′

0 = amμ0 = 0.184μ0, (2.53)

ε∞ = lim
ω→∞

(
G ′

sh

jω
+ C ′

sh

)
= C ′

0 = aeε0 = 10.42ε0, (2.54)

i.e. the bounded energy criterion (2.42) is fulfilled and in the high frequency limit
the dispersion is determined by the series inductance and shunt capacitance. Thus,
the unit cell is realizable in its current form.

Left-Handed Unit Cell

A left-handed unit cell as depicted in Fig. 2.8 consists of a series capacitance and a
shunt inductance [14]. Adding resistive losses yields the series impedance and shunt
admittance

Z ′
se,LH(ω) = R′

se + 1

jωC ′
se

, (2.55)

Y ′
sh,LH(ω) = G ′

se + 1

jωL ′
sh

. (2.56)

In the high frequency limit, the complex effective material parameters become

μ∞ = lim
ω→∞

Z ′
se,LH(ω)

jω
= ε∞ = lim

ω→∞
Y ′
sh,LH(ω)

jω
= 0 (2.57)

as shown for the effective permeability in Fig. 2.9. L ′
0 andC ′

0 in Eqs. (2.48) and (2.49)
are zero and hence, the magnetic and electric susceptibility do not vanish for large
frequencies. Thus, the square integrability (2.42) and the conditions (i)–(iii) are not
fulfilled.

Fig. 2.8 Unit cell
configuration of a lossy
left-handed transmission line

2C′
se

L′
sh

R′
se/2 2C′

se R′
se/2

G′
sh
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Fig. 2.9 Comparison of the
effective permeability of a
distributed purely LH and
CRLH transmission line
(R′

se = 10 k
/m,
L ′
0 = 1µH/m,

C ′
se = 1 fF · m)

10 20 30 40 50
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0

0.5

1

f/GHz

ef
f/
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μ

μ
μ

μ
μ

′
eff,LH
′
eff,CRLH
′′
eff,(CR)LH

Fig. 2.10 Unit cell
configuration of a lossy
composite left-handed
transmission line

2C′
se

L′
sh

R′
se/2 2C′

se R′
se/2

C′
0

L′
0/2 L′

0/2

G′
sh

Adding a non-zero L ′
0 andC ′

0 as in (2.48) and (2.49) yields the composite right/left-
handed (CRLH)unit cell [15] as depicted inFig. 2.10with theDrude dispersion (2.23)
and (2.24) created by

Z ′
se,CRLH = R′

se + j

(
ωL ′

0 − 1

ωC ′
se

)
, (2.58)

Y ′
sh,CRLH = G ′

se + j

(
ωC ′

0 − 1

ωL ′
sh

)
. (2.59)

The unit cell consists of a series resonator in the series branch and a parallel resonator
in the shunt branch with the magnetic and electric plasma frequency

ωpμ = 1
√

L ′
0C ′

se

, ωpε = 1
√

L ′
shC

′
0

. (2.60)

Thus, a non-zero value of L ′
0 and C ′

0 ensures a finite magnetic and electric plasma
frequency, respectively. For the high frequency limit that yields

μ∞ = lim
ω→∞

(
R′
se

jω
+ L ′

0 − 1

ω2C ′
se

)
= L ′

0 (2.61)

and

ε∞ = lim
ω→∞

(
G ′

sh

jω
+ C ′

0 − 1

ω2L ′
sh

)
= C ′

0 (2.62)
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which can be seen for the effective permeability in Fig. 2.9. The effective permeability
in the high frequency limit does not vanish but reaches a constant value. The same
holds for the frequency response of the effective permittivity.

A more practical explanation takes the physical implementation and realizability
of a unit cell into consideration. The elements C ′

se and L ′
sh have to be embedded in

a host medium, e.g. a microstrip line, which can be described by a per unit length
series inductance and shunt capacitance. Hence, the series inductance L ′

0 and shunt
capacitance C ′

0 can be considered as parasitic effects created by the host medium.

Dual Composite Right/Left-Handed Unit Cell

The series impedance and shunt admittance of a dual composite right/left-Handed
(D-CRLH) unit cell in Fig. 2.11, consisting of a parallel resonator in the series branch
and a series resonator in the shunt branch [16], are

Z ′
se,DCRLH(ω) = 1

G ′
se + j

(
ωC ′

se − 1
ωL ′

se

) , (2.63)

Y ′
sh,DCRLH(ω) = 1

R′
sh + j

(
ωL ′

sh − 1
ωC ′

sh

) . (2.64)

The high frequency limit becomes

μ∞ = lim
ω→∞

Z ′
se,DCRLH(ω)

jω
= ε∞ = lim

ω→∞
Y ′
sh,DCRLH(ω)

jω
= 0 (2.65)

and the condition of square integrability (2.42) is not fulfilled.
The effective material parameters

μeff = − 1

C ′
se

· 1

ω2 − ω0μ − jωδμ

, (2.66)

εeff = − 1

L ′
sh

· 1

ω2 − ω0ε − jωδε

(2.67)

Fig. 2.11 Unit cell
configuration of a lossy dual
composite left-handed
transmission line

L′
se/2

L′
sh

2G′
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C′
sh

G′
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L′
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2G′
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2C′
se
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reveal a Lorentz dispersion with the magnetic and electric resonance frequency

ω0μ = 1
√

L ′
seC

′
se

, ω0ε = 1
√

L ′
shC

′
sh

(2.68)

and the magnetic and electric damping factors

δμ = G ′
se

C ′
se

, δε = R′
sh

L ′
sh

. (2.69)

However, a transition frequency, i.e. a zero in the dispersion equations where the
sign of the real part changes from negative to positive, does not exist. Hence, above
the resonance frequency, the real part of the effective material parameters is negative
for all frequencies ω > ω0.

Addition of the series inductance L ′
0 in the series branch and the parallel capaci-

tance C ′
0 in the shunt branch yields the effective material parameters

μeff = L ′
0

(

1 − ω2
tμ − ω2

0μ

ω2 − ω2
0μ − jωδμ

)

, (2.70)

εeff = C ′
0

(
1 − ω2

tε − ω2
0ε

ω2 − ω2
0ε − jωδε

)
(2.71)

following the Lorentz dispersion (2.17) and (2.18). As for the CRLH unit cell, L ′
0 =

μ∞ and C ′
0 = ε∞ ensure the square integrability (2.42) as well as a finite magnetic

and electric transition frequency

ωtμ =
√

ω2
0μ + 1

L ′
0C ′

se

, ωtε =
√

ω0ε + 1

C ′
0L ′

sh

. (2.72)

The general configuration in Fig. 2.6 indicates that for the D-CRLH unit cell, the
addition of the inductance in the series branch and capacitance in the shunt branch
can be done at different positions of the unit cell to enforce the square integrability.
As shown in Table2.2, an inductance L ′

0 and capacity C ′
0 can be added in series

and parallel of the original series and shunt branch, respectively, which has been
done in the previous investigation. Another possibility is the addition of L ′

2 and C ′
2,

which also yields a correct Lorentz dispersion with a finite transition frequency and a
positive high frequency limit (2.44) and (2.45). The corrected unit cell configurations
correspond to the Lorentz- and Drude dispersion models derived before in Sect. 2.2.
The number of possible positions is increased with the number of elements (M ,
N in (2.48) and (2.49)) in the unit cell. The resulting series impedance and shunt
admittance are closely related to reactances and its negative reciprocals, respectively,
in the form a Foster network [17]. The difference is that in the present topology, losses
can be taken into account by the use of complex poles and zeros in the impedance
and admittance function.
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Table 2.2 D-CRLH unit cell
elements with corrected
series- and shunt impedance
and admittance

L′

C′

L′
1

C′
1L′

2

L′
1

C′
1

L′
0

impedance Z′
se

L′ C′

C′
0

C′
1L′

1

L′
1

C′
1

C′
2

admittance Y ′
sh

Original Corrected

Seriesbranch

Shuntbranch

2.3.2 Kramers–Kronig Relation for Phase Reconstruction

The Hilbert transform (2.40), also known as Kramers–Kronig relation [11, 12],
relates the real and imaginary part of complex transfer functions of causal and stable
systems. Here, these transfer functions are the magnetizability χm and polarizability
χe of a continuous material or periodic structure.

The complex wavenumber k can be expressed by the material parameters so that

k2(ω) = k2
0(ω) [1 + χm(ω)] [1 + χe(ω)] , (2.73)

where k0 is the free space wavenumber

k0(ω) = ω
√

μ0ε0. (2.74)

For a causal and stable material, Titchmarsh’s theorem and hence, the Kramers–
Kronig relation (2.40) has to be fulfilled for χm(ω) and χe(ω). Since the symmetry
(2.41) of the real and imaginary parts after the multiplication of both susceptibilities
is maintained, the square of the wavenumber in the form

k2(ω)

k2
0(ω)

− 1 = χm(ω) + χe(ω) + χm(ω)χe(ω) (2.75)
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is a causal spectrum so that the Kramers–Kronig relation can be applied and

k2(ω)

k2
0(ω)

= 1 − j

π

 ∞

−∞
k2(Ω)/k2

0(Ω)

ω − Ω
dΩ. (2.76)

The integral denotes the Cauchy principal value

 b

a
f (x)dx = lim

ε→0+

(ˆ c−ε

a
f (x)dx +

ˆ b

c+ε

f (x)dx

)
. (2.77)

A detailed derivation taking into account the symmetry (2.41) can be found inAppen-
dix A.1.

The Kramers–Kronig relation can be applied to the square of the wavenumber
k2(ω) or to the square of the refractive index [18]

n2(ω) = k2(ω)

k2
0(ω)

(2.78)

while an application directly to the wavenumber as in extraction methods [19, 20] is
in general not possible since the causality of k(ω) is not necessarily maintained by
the square root [18]. For small susceptibilities, however, it can be approximated

k(ω) ≈ k0(ω)

(
1 + χm(ω)

2

) (
1 + χe(ω)

2

)
(2.79)

which has, concerning the susceptibilities, the form of (2.73) so that the Kramers–
Kronig relation can be approximated and

k(ω)

k0(ω)
≈ 1 − j

π

 ∞

−∞
k(Ω)/k0(Ω)

ω − Ω
dΩ. (2.80)

For the real part of the wavenumber this yields

Re{k(ω)}
k0(ω)

≈ 1 + 1

π

 ∞

−∞
Im{k(Ω)}/k0(Ω)

ω − Ω
dΩ. (2.81)

With that, the wavenumber, which in many extraction methods is ambiguous, can be
determined from the losses, expressed by the non-ambiguous imaginary part Im{k}.
Due to the symmetry (2.41), integration only of the positive part of the spectrum is
necessary

Re{k(ω)}
k0(ω)

≈ 1 + 2

π

 ∞

0

ωIm{k(Ω)}/k0(Ω)

ω2 − Ω2
dΩ (2.82)

which is used in phase reconstruction methods [19, 20] and later in extraction of
effective material parameters in Sect. 4.1.

http://dx.doi.org/10.1007/978-3-319-28179-7_4
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2.4 Effective Material Parameters of Discrete Periodic
Structures

In passive, continuous media, Maxwell’s equations (2.1)–(2.4) and the material rela-
tions (2.5) and (2.6) are defined for the same point r in space.D(t, r) is determined by
E(t ′, r) and B(t, r) by H(t ′, r) in the same point with a temporal dispersion caused
by the material. However, in a discretized, effective material, this is not fulfilled
anymore since the response in the point r is determined by the field in the point r′.
The physical distance

∣
∣r − r′∣∣ between these two points causes a phase difference

between D(t, r) and E(t ′, r′), and between B(t, r) and H(t ′, r′), respectively. Since
this dispersion is caused by the spatial separation of the magnetic response and the
electric response, it is called spatial dispersion [9].

The effect of spatial dispersion can be considered in the transmission line model.
Up to this point it was assumed that the impedance and admittance to design a
desired dispersion are distributed elements in an infinitesimal short unit cell, i.e.
impedance and admittance can be defined over an infinitesimal short section. In a
real implementation, such distributed elements cannot be realized since they cannot
be arbitrarily scaled down in size but will always have a finite physical extent. Hence,
lumped elements have to be used to approximate the distributed values

Z ′
se(ω) = lim

Δz→0

Zse(ω)

Δz
≈ 1

Δz
Zse(ω), (2.83)

Y ′
sh(ω) = lim

Δz→0

Ysh(ω)

Δz
≈ 1

Δz
Ysh(ω). (2.84)

Material parameters derived from field values at the interface of such discretized
structures are non-local. Another explanation is based on the phase response of the
unit cell. With increasing frequency, a periodic structure with distributed elements
can provide an infinitely large phase shift since it consists of an infinite number of
unit cells. If these distributed elements are replaced by lumped elements, the unit cell
number in a certain physical length becomes finite and hence, the maximum phase
shift is limited. Here, the impact of this discretization on effective material parame-
ters, which has to be taken into account under certain conditions, is investigated.

The Bloch impedance, i.e. the characteristic impedance of periodic structures,

Z B = ±
√

μeff

εeff
(2.85)

and the wavenumber
k = ±ω

√
μeffεeff (2.86)

can be used to describe the wave propagation in periodic, discrete structures equiv-
alent to the propagation in homogenous materials [21]. Since for the discrete case
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these parameters not only depend on the element values, but also on the unit cell
configuration, different topologies are investigated.

Unit Cell in T-Configuration

Figure2.12 shows an unsymmetric unit cell in T-configuration. The unit cell length p
is finite and non-zero and using the chain parameters, the port voltages and currents
of the n-th unit cell in an infinite array become

V [np] = V [(n + 1)p](1 + Z1Y2) + I [(n + 1)p](Z1 + Z2 + Z1Y2Z3), (2.87)

I [np] = V [(n + 1)p]Y2 + I [(n + 1)p](1 + Y2Z3). (2.88)

Due to the periodicity, the Floquet–Bloch theorem [21] with the periodic boundary
condition

V [(n + 1)p] = V [np]e− jk(T) p, (2.89)

I [(n + 1)p] = I [np]e− jk(T) p (2.90)

yields

V [np] = V [np](1 + Z1Y2)e
− jk(T) p + I [np](Z1 + Z2 + Z1Y2Z3)e

− jk(T) p, (2.91)

I [np] = V [np]Y2e− jk(T) p + I [np](1 + Y2Z3)e
− jk(T) p. (2.92)

The Bloch impedance of a periodic structure is defined as the ratio of the voltage and
current at each unit cell interface and has to be independent of the position n of the
infinite array:

Z B[np] = V [np]
I [np]

!= Z B[(n + 1)p] = V [(n + 1)p]
I [(n + 1)p] . (2.93)

That yields the two conditions

Z (T)
B = Z1 + Z3 + Z1Y2Z3

e jk(T) p − (1 + Z1Y2)
(2.94)

and

Fig. 2.12 Unsymmetric unit
cell in T-configuration

Z1

Y2

Z3I(z)

V (z)

p

V (z+ p)

I(z+ p)



26 2 Wave Propagation in Periodic Structures

Z (T)
B = e jk(T) p − (1 + Y2Z3)

Y2
(2.95)

and thus,

Z (T)
B = Z1 − Z3

2
±

√
(Z1 − Z3)2

4
+ Z1 + Z3

Y2
+ Z1Z3. (2.96)

In an array of unsymmetric unit cells with Z1 �= Z3, the Bloch impedance experi-
enced by the propagating wave depends on its direction. Hence, the two solutions
of the Bloch impedance correspond to the wave propagating in positive or negative
direction of the periodic structure.

Furthermore, (2.94) and (2.95) yield the dispersion relation

e j2k(T) p − (2 + Z1Y2 + Y2Z3)e
jk(T) p + 1 = 0 (2.97)

so that

k(T) = ± 1

p

[
cos−1

(
1 + (Z1 + Z3)Y2

2

)
+ 2mπ

]
. (2.98)

To obtain the same Bloch parameters for the forward and backward propagating
wave, the unit cell has to be symmetric with Z1 = Z3 = Zse/2 and Y2 = Ysh so that
(2.96) and (2.98) become

Z (T)
Bsym = ±

√
4Zse + Z2

seYsh

4Ysh
, (2.99)

k(T) = ± 1

p

[
cos−1

(
1 + ZseYsh

2

)
+ 2mπ

]
. (2.100)

Using (2.85) and (2.86), the effective material parameters of the symmetric T-unit
cell become

μ
(T)
eff (ω) = ± 1

ωp
cos−1

(
1 − (ωp)2

2
μ̃ε̃

)√
μ̃

ε̃
−

(
ωpμ̃

2

)2

(2.101)

ε
(T)
eff (ω) = ± 1

ωp
cos−1

(
1 − (ωp)2

2
μ̃ε̃

)√
μ̃

ε̃
−

(
ωpμ̃

2

)2
−1

(2.102)

where μ̃ and ε̃ denote the effective material parameters (2.14) and (2.15) of the
distributed structure with p → 0. It can be seen that for a finite unit cell length
with p > 0, the effective material parameters are not only determined by the unit
cell element values, but also by the unit cell length p and the wavenumber of the
distributed structure

k̃(ω) = ω
√

μ̃(ω)ε̃(ω). (2.103)
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Furthermore, the effectivematerial parameters are not independent of eachother since
both, the effective permeability and permittivity, are a function of both distributed
material parameters and hence, of the series and shunt branch of the unit cell.

For a small unit cell length with ωp � 1√
μ̃(ω)ε̃(ω)

, the inverse cosine becomes

lim
ωp→0

1

ωp
cos−1

(
1 − (ωp)2

2
a

)
= ±√

a (2.104)

so that for a small unit cell length compared to guided wavelength, the material
parameters of the discrete periodic structure can be approximated by the effective
material parameters of the distributed structure:

lim
ωp→0

μ
(T)
eff = μ̃, (2.105)

lim
ωp→0

ε
(T)
eff = ε̃. (2.106)

For large values of |μ̃(ω) · ε̃(ω)|, e.g. close to a Lorentz resonance or for low frequen-
cies in a Drude material, this approximation is not valid and the deviation between
the effective material parameters of the discrete and distributed structure becomes
significant [22, 23].

Unit Cell in Π-Configuration

Equivalent to the T-configuration, the voltages and currents at the ports of an unsym-
metric unit cell in Π -configuration as shown in Fig. 2.13 are

V [np] = V [(n + 1)p](1 + Z2Y3) + I [(n + 1)p]Z2, (2.107)

I [np] = V [(n + 1)p](Y1 + Y1Z2Y3 + Y3) + I [(n + 1)p](1 + Y1Z2). (2.108)

The periodic boundary condition gives

V [np] = V [np](1 + Z2Y3)e
− jk(Π) p + I [np]Z2e− jk(Π) p (2.109)

I [np] = V [np](Y1 + Y1Z2Y3 + Y3)e
− jk(Π) p + I [np](1 + Y1Z2)e

− jk(Π) p (2.110)

Fig. 2.13 Unit cell in
Π -configuration

p

Y1

Z2

Y2V (z) V (z+ p)

I(z) I(z+ p)
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and with (2.93)

Z (Π)
B = Z2

e jk(Π) p − (1 + Z2Y3)
(2.111)

and

Z (Π)
B = e jk(Π) p − (1 + Y1Z2)

Y1 + Y1Z2Y3 + Y3
. (2.112)

This yields the Bloch impedance of the unit cell in Π -configuration

Z (Π)
B = Z2(Y3 − Y1)

2(Y1 + Y1Z2Y3 + Y3)
±

√(
Z2(Y3 − Y1)

2(Y1 + Y1Z2Y3 + Y3)

)2
+ Z2

Y1 + Y1Z2Y3 + Y3
.

(2.113)

The phase terms give the dispersion relation

e j2k(Π) p − (2 + Y1Z2 + Z2Y3)e
jk(Π) p + 1 = 0 (2.114)

and thus

k(Π) = ± 1

p

[
cos−1

(
1 + (Y1 + Y3)Z2

2

)
+ 2mπ

]
. (2.115)

As before for the T-configuration, a symmetric unit cell results in a Bloch impedance
which is independent of the propagation direction so that with Y1 = Y3 = Ysh/2 and
Z2 = Zse the Bloch impedance is

Z (Π)
Bsym = ±

√
4Zse

4Ysh + ZseY 2
sh

(2.116)

and the wavenumber is

k(Π) = ± 1

p

[
cos−1

(
1 + ZseYsh

2

)
+ 2mπ

]
= k(T). (2.117)

With (2.85) and (2.86), the effective material parameters of the symmetricΠ -unit
cell become

μ
(Π)
eff (ω) = ± 1

ωp
cos−1

(
1 − (ωp)2

2
μ̃ε̃

) √
ε̃

μ̃
−

(
ωpε̃

2

)2
−1

(2.118)

ε
(Π)
eff (ω) = ± 1

ωp
cos−1

(
1 − (ωp)2

2
μ̃ε̃

) √
ε̃

μ̃
−

(
ωpε̃

2

)2

(2.119)
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which for a small guided wavelength become

lim
ωp→0

μ
(Π)
eff = μ̃, (2.120)

lim
ωp→0

ε
(Π)
eff = ε̃. (2.121)

Unit Cell in L-Configuration

The strongly unsymmetric unit cell in L-configuration is a special case of the T- and
Π -configuration and can be derived from the T-configuration with the impedance
Z3 set to zero or from the Π -configuration with the admittance Y1 set to zero. With
Z1 = Z2 = Zse, Y2 = Ysh and Y1 = Z3 = 0 this yields

Z (L)
B = Zse

2
±

√
Z2
se

4
+ Zse

Ysh
(2.122)

and

k(L) = ± 1

p

[
cos−1

(
1 + ZseYsh

2

)
+ 2mπ

]
. (2.123)

The effective material parameters after the discretization become

μ
(L)
eff (ω) = 1

ωp
cos−1

(

1 − (ωp)2

2
μ̃ε̃

) ⎛

⎝ jωpμ̃

2
±

√
μ̃

ε̃
−

(
ωpμ̃

2

)2
⎞

⎠ , (2.124)

ε
(L)
eff (ω) = 1

ωp
cos−1

(

1 − (ωp)2

2
μ̃ε̃

) ⎛

⎝ jωpμ̃

2
±

√
μ̃

ε̃
−

(
ωpμ̃

2

)2
⎞

⎠

−1

. (2.125)

It can be seen that, due to the unsymmetry of the unit cell, not only the Bloch
impedance, but also the effective material parameters depend on the propagation
direction, i.e. although a wave experiences the same phase shift for the forward and
backward direction, the Bloch impedance and hence, the effective material parame-
ters are different.

As for the T- and Π -configuration, the small wavelength approximation of the
effective material parameters becomes

lim
ωp→0

μ
(L)
eff = μ̃, (2.126)

lim
ωp→0

ε
(L)
eff = ε̃. (2.127)
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Discretization of a Lorentz–Drude Material

The impact of discretization on the dispersion parameters and the resulting spatial
dispersion is demonstrated for an effective Lorentz–Drude material and a unit cell in
T-,Π - and L-configuration. The Lorentz parameters for the effective permeability are
ω0μ = 2π · 1.1GHz, ωtμ = 2π · 1.5GHz, δμ = 100MHz, μ∞ = μ0 and the Drude
parameters for the effective permittivity areωpε = 2π · 2GHz, δε = 100MHz, ε∞ =
2ε0.

In the ideal case for an infinitesimal short unit cell, these parameters yield different
propagation and stop bands. Below ω0μ the effective permeability and permittivity
have different signs which results in a stop band due to the imaginary wavenumber
(2.8). The same stop band behavior can be observed between ωtμ and ωpε. In the
frequency band between ω0μ and ωtμ, both, μ′

eff and ε′
eff simultaneously become

negative yielding a backward wave band with a negative phase velocity vp < 0.
Above ωpε, μ′

eff and ε′
eff are positive resulting in a forward wave band with vp > 0.

The dispersion parameters for the distributed unit cell with p → 0 and for a unit
cell length of 10 and 40mm can be seen in Fig. 2.14 for the T-configuration and
in Fig. 2.15 for the Π -configuration, respectively. Using the distributed model, the
dispersion parameters are independent of the unit cell configuration. The effective
permeability follows the Lorentz dispersion (2.17) whereas the permittivity follows
the Drude dispersion (2.24). In the region of simultaneously negativeμ′

eff and ε′
eff, the

wavenumber k becomes negative, while for positive μ′
eff and ε′

eff, the wavenumber is
positive.

The dispersion properties of the T- and Π -configuration differ when the unit cell
length becomes larger. This becomes noticeable near the magnetic resonance fre-
quency of 1.1GHz, where the wavenumber (2.103) is large. Here, an anti-resonance
or resonance occurs in the real part of the effective permittivity [23]. Furthermore, it
can be seen that the shape of the effective permeability differs from its original form
(2.17).

It can be seen in the plot of the unit cell phase shift that it is saturated at kp = ±π ,
which is the maximum possible unit cell phase shift of a discrete Lorentz–Drude unit
cell. Although in the distributed case, the phase shift becomes very large near the
magnetic resonance frequency, it is bounded by the discretization and the maximum
unit cell phase shift. Hence, the usable bandwidth of the backward wave transmission
band becomes smaller with an increased unit cell length.

In Fig. 2.16, the real part of the Bloch impedance and the effective material para-
meters according to the two solutions of (2.122) of the unit cell in L-configuration
are shown. For an infinitesimal short unit cell, both solutions, representing the for-
ward and backward propagating wave, are identical. However, if the unit cell length
is increased, the effect of spatial dispersion becomes apparent. As in the T- and
Π -configuration, the shape of the effective material parameters differ from the ideal
Lorentz–Drude dispersion and resonances occur in the effective permittivity. Further-
more, all dispersion parameters except the phase are different for waves in forward
and backward direction.
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Fig. 2.14 Impact of the unit cell length on the dispersion parameters of a symmetric unit cell in
T-configuration

Due to the equivalence between effective material parameters and transmission
line parameters (2.85) and (2.86), the impact of discretization depends on the unit cell
circuit and not on the geometry of the unit cell. Hence, the presented considerations
are valid for one-dimensional artificial transmission lines aswell as for two- and three-
dimensional lattices.
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Chapter 3
Implementation of Three-Dimensional
Lorentz-Drude-Materials

The previous chapter has demonstrated how the magnetic and electric response of
a periodic structure can be designed by adapting the elements of the unit cell. For
transmission linemetamaterials, where a guidedwave propagateswithin a lattice, this
can be done by employing lumped elements according to the desired magnetic and
electric response. However, for three-dimensional transmission line metamaterials
[1, 2], coupling to the incident wave in free space and technological complexity are
limiting factors.An alternative approach is the use of rings,wires and combinations of
them to form a lattice that is excited by an incidentwave, to independentlymanipulate
the magnetic and electric response, respectively.

In this chapter, different three-dimensional unit cell particles are investigated and
their dispersion characteristics and transmission line equivalent circuits are derived.
Two fundamental configurations to manipulate the electric and magnetic field with
periodic structures, the wire medium [3, 4] and the split-ring resonator [5], are inves-
tigated. They are the basis for most unit cell particles, such as omega resonators [6]
or the fishnet [7, 8], which are used later in this work. Additionally, dispersion expe-
rienced by waves propagating in hollow waveguides is investigated and described in
terms of effective material parameters.

3.1 Wire Lattice

Figure3.1a shows a section of a wire lattice [3, 4]. The cylindrical wires with the
diameter d and the periodicity p in the xz-plane are continuous in y-direction. A
lumped element representation of a single cubic unit cell with the side length p,
where the lossy wire is modeled by the series connection of an inductor and resistor,
is shown in Fig. 3.1b for the excitation with a plane wave and the electric field parallel
to the wires.

Taking causality and the high frequency limit (2.44) and (2.45) into account, the
unit cell equivalent circuit in Fig. 3.2 can be derived where the series inductance
L0 and shunt capacitance C0 represent the permeability and permittivity of the host

© Springer International Publishing Switzerland 2016
M. Maasch, Tunable Microwave Metamaterial Structures, Springer Theses,
DOI 10.1007/978-3-319-28179-7_3
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Fig. 3.1 a Section of a wire medium (3 × 3 unit cells) with continuous wire in y-direction, b
Lumped element representation of the continuous wire medium

Fig. 3.2 Unit cell equivalent
circuit of the continuous wire
medium
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p

C0

Lwire

Rwire
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material. For small losses of the host medium and a small unit cell length p, i.e.
when the spatial dispersion is neglected, (2.83) and (2.84) yield the effective material
parameters

μeff = L0

p
= μe, (3.1)

εeff = 1

p

(
C0 + 1

jωRwire − ω2Lwire

)
= εe

(

1 − ω2
pε

ω2 − jωδε

)

(3.2)

with a constant effective permeability and an effective permittivity following the
Drude dispersion [3, 4]. μe and εe are the material parameters of the host medium.
The Drude dispersion for the effective permittivity is observed since the electric field
in y-direction canmove free charges in thewire. Since thewire is continuous, charges
can move freely (only bound by the wire geometry) in y-direction, equivalent to the
free charges in a bulk metal or plasma.

With the per unit length inductance of the straight wire [9]

L ′
wire = μe

2π
ln

2p

d
, (3.3)

the conductivity σ of the wires, and the geometry parameters, the electric plasma
frequency and collision frequency (without considering the skin effect) become

http://dx.doi.org/10.1007/978-3-319-28179-7_2
http://dx.doi.org/10.1007/978-3-319-28179-7_2
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Fig. 3.3 a Unit cell of a cut wire medium, b Unit cell equivalent circuit of the cut wire medium

ωpε =
√

2π

μeεe p2 ln 2p
d

, δε = 8

μeσd2 ln 2p
d

. (3.4)

For a wire lattice in vacuum, the electric plasma frequency becomes [4]

ωpε =
√

2πc20
p2 ln 2p

d

. (3.5)

If the wire is cut as in Fig. 3.3a, the gap with length g introduces a capacitor in
series with the wire inductance. This geometry yields the unit cell equivalent circuit
in Fig. 3.3b. The effective permeability is not changed compared to the continuous
wires while the effective permittivity has the Lorentz form

εeff = 1

p

(
C0 + 1

jωRwire − ω2Lwire + 1/Cgap

)
(3.6)

= εe

(
1 − ω2

tε − ω2
0ε

ω2 − ω2
0ε − jωδε

)
. (3.7)

The electric resonance frequency becomes

ω0ε =
√

8g

μeεed2 p ln 2p
d

(3.8)

and the transition frequency

ωtε =
√

ω2
0ε + ω2

pε =
√

8gp + 2πd2

μeεe p2d2 ln 2p
d

. (3.9)
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The derived Drude or Lorentz dispersion only occurs for the electric field com-
ponent in y-direction, i.e. for a wire orientation as shown in Figs. 3.1a and 3.3a.
Hence, the response shows a uniaxial anisotropic behavior with the effective permit-
tivity tensor

¯̄εeff =
⎛

⎝
εe 0 0
0 εwire 0
0 0 εe

⎞

⎠ . (3.10)

Additionally, for a not negligible unit cell length p, spatial dispersion has to be taken
into account as described above in Sect. 2.4.

3.2 Split-Ring Resonator

A split-ring resonator (SRR) in a three-dimensional unit cell [5] is shown in Fig. 3.4a.
With the ring inductance LSRR, the total capacitance between the rings CSRR and the
loss resistance RSRR, the unit cell can be described by the model in Fig. 3.4b [10].

If the magnetic field of the incident plane wave is oriented perpendicular to the
rings, the unit cell equivalent circuit in Fig. 3.5a can be used to describe the dispersion
created by a lattice of split-ring resonators. The rings are modeled by the lossy res-
onator with LSRR andCSRR. A part of the total magnetic fluxΦuc of the incident wave
over the unit cell excites a current in the rings, which is modeled by the transformer
consisting of LSRR, L0, and the coupling factor S. L0 represents the permeability μe

of the host medium. Due to causality (2.44) and (2.45), the shunt capacitance C0,
which represents the host permittivity εe, has to be added in the shunt branch. An
alternative form of the unit cell with the conversion of the transformer is shown in
Fig. 3.5b where the mutual inductance is

x
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z

H

E

(a) (b)

k

RSRR

L S
RR

C SR
R

Fig. 3.4 a Unit cell of split-ring resonator medium, b Lumped element representation of the split-
ring resonator
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Fig. 3.5 a Unit cell equivalent circuit of the split-ring resonator, b Transformed unit cell

M2 = S2L0LSRR. (3.11)

With this transformed unit cell and (2.83) and (2.84), the effective material para-
meters become (without considering spatial dispersion)

μeff = L0

p

(

1 − ω2S2

ω2 − ω2
0μ − jωδμ

)

, (3.12)

εeff = C0

p
= εe, (3.13)

with a Lorentz dispersion for the effective permeability and a constant effective
permittivity. The magnetic resonance frequency and damping factor are

ω0μ =
√

1

LSRRCSRR
, δm = RSRR

LSRR
. (3.14)

The transition frequency, where the real part of the effective permeability changes
from negative to positive sign, is

ω2
tμ = ω2

0μ

1 − S2
= 1

(
LSRR − M2

L0

)
CSRR

. (3.15)

It can be seen that the coupling factor S is an important parameter which determines
the bandwidth of the negative permeability region as well as the strength of the
Lorentz resonance, i.e. themagnitude of the effective permeability near the resonance
frequency. S is the amount of magnetic flux coupled into the ring:

http://dx.doi.org/10.1007/978-3-319-28179-7_2
http://dx.doi.org/10.1007/978-3-319-28179-7_2
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S = ΦSRR

Φuc
=

∫

ASRR

B(z) · dA

∫

Auc

B(z) · dA
. (3.16)

The total magnetic flux in the yz-plane of the cubic unit cell is

Φuc =
∫ p/2

z=−p/2

∫ p/2

y=−p/2
B0e− jω

√
μeεezdydz (3.17)

= 2B0 p

ω
√

μeεe
sin(ω

√
μeεe p/2). (3.18)

The flux that is coupled into the split-ring resonator depends on its size and shape.
For a rectangular shape with the length lSRR and the height hSRR, the flux in the ring
becomes

ΦSRR� =
∫ lSRR/2

z=−lSRR/2

∫ hSRR/2

y=−hSRR/2
B0e− jω

√
μeεezdydz (3.19)

= B0hSRR

ω
√

μeεe
2 sin(ω

√
μeεelSRR/2) (3.20)

which yields the coupling factor

S� = hSRR

p
· sin(ω

√
μeεelSRR/2)

sin(ω
√

μeεe p/2)
. (3.21)

In the case of a circular shape with the inner radius ri , the flux in the ring is

ΦSRR◦ =
∫ ri

z=−ri

∫ √
r2i −z2

y=−
√

r2i −z2
B0e− jω

√
μeεezdydz = 2π B0ri J1(ω

√
μeεeri )

ω
√

μeεe
(3.22)

with J1 denoting the first order Bessel function and hence, the coupling factor
becomes

S◦ = πri

p
· J1(ω

√
μeεeri )

sin(ω
√

μeεe p/2)
. (3.23)

In the derivation of (3.21) and (3.23) it is assumed that the phase of the incident
magnetic field advances over the length of the split-ring resonator. For a short unit cell
with respect to the wavelength, the phase of the incident magnetic flux density B(z)
can be assumed to be constant over the unit cell length p. Hence, the wavenumber
of the host material ω

√
μeεe becomes small and (3.21) can be approximated by

S� ≈ hSRRlSRR
p2

(3.24)
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Fig. 3.6 a Edge coupled split-ring resonator, b Broadside coupled split ring resonator

and (3.23) by

S◦ ≈ πr2i
p2

(3.25)

or independent of the shape [5]

S ≈ ASRR

Auc
. (3.26)

For a small split length, the magnetic resonance frequency and the damping factor
of the edge coupled split-ring resonator in Fig. 3.6a is [5]

ω0μ =
√

3p

μeεeπr3i ln
2w
g

, δμ = 2pσ

μeri
, (3.27)

by taking the total ring inductance and the gap capacitance between the rings.
For the broadside coupled configuration in Fig. 3.6b, the capacitance CSRR is

formed by the rings that face each other at a small distance g, yielding

ω0μ =
√

3gp

2μeεeπ3r4
. (3.28)

A detailed comparison of the edge coupled and broadside coupled split-ring res-
onator in three-dimensional and planar configuration together with their equivalent
circuit elements can be found in [11, 12].

Due to the orientation of the split-ring resonators, the Lorentz dispersion only
affects the magnetic field component in x-direction which can be described by the
effective uniaxial permeabilty tensor
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Fig. 3.7 Unit cell (broadside coupled split-ring resonator) with a quasi-symmetry: a Original unit
cell, b Unit cell mirrored at the z = p/2 plane
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Fig. 3.8 a/c: Effect of bi-anisotropy in an unsymmetrical geometry, b/d: Cancellation of electro-
magnetic coupling in a (quasi-) symmetrical geometry

¯̄μeff =
⎛

⎝
μSRR 0 0
0 μe 0
0 0 μe

⎞

⎠ . (3.29)

As depicted in Fig. 3.7 for the broadside coupled split-ring resonator, the investi-
gated unit cells show a geometric quasi-symmetry with respect to the plane z = p/2,
i.e. the electromagnetic response is approximately the same for the original geome-
try (Fig. 3.7a) and the mirrored geometry (Fig. 3.7b). Without such a symmetry as in
Fig. 3.8a, c, the effect of bi-anisotropy [13, 14] has to be considered. In the unsym-
metric configuration, the incident magnetic field H0 induces a current ISRR in the
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ring which yields an electric field ESRR over the SRR gap (Fig. 3.8a). This superim-
poses with the incident electric field E0. Equivalently, the incident electric field E0

drives a current in the ring which yields a magnetic field HSRR that superimposes
with the incident magnetic field H0 (Fig. 3.8c). This magnetoelectric coupling [15]
can be taken into account, if the material equations (2.5) and (2.6) are extended by
the bi-anisotropy term ξ :

B(ω) = μ0 [M + H0 + HSRR(E0)] = μeff(ω)H0 + ξμε(ω)E0, (3.30)

D(ω) = ε0 [E0 + ESRR(H0)] + P = εeff(ω)E0 + ξεμ(ω)H0. (3.31)

If the unit cell is geometrically symmetric in propagation direction as in Fig. 3.8b,
the incident magnetic field H0 induces the same current in each ring which yields an
electric field with ESRR1 ≈ −ESRR2 over each gap of the split-ring resonators. In the
case of a small unit cell length, these fields cancel out so that (3.31) becomes

D(ω) = ε0 [E0 + ESRR1(H0) + ESRR2(H0)] + P ≈ ε0E0 + P = εeff(ω)E0. (3.32)

As shown in Fig. 3.8d, the same occurs in the symmetric geometry for the incident
electric field, where the generated magnetic fields HSRR1 ≈ −HSRR2 cancel out each
other so that (3.30) becomes

B(ω) = μ0 [M + H0 + HSRR1(E0) + HSRR2(E0)] ≈ μ0(M + H0) = μeff(ω)H0.

(3.33)

Although the effect of bi-anisotropy has been demonstrated here for a split-ring
resonator, it has to be considered for any unit cell geometry where magnetoelectric
coupling effects inside the unit cell do not cancel out.

The presented equivalent circuits are valid for a three-dimensional unit cell con-
figuration. However, it is also possible to exploit the split-ring resonator for planar
transmission line metamaterials, which offers a further variation of the geometry and
the dispersion properties due to the guided wave nature [12].

To manipulate the electric and magnetic response, the wire lattice and split-ring
resonators can be combined. Under certain conditions, e.g. if spatial dispersion and
bi-anisotropy can be neglected, both can be designed independently so that desired
effective material parameters or impedance and phase response can be tailored.

3.3 Hollow Waveguides

The approaches above are based on themanipulation of the electric andmagnetic field
by the use of particles with a physically finite non-zero size. However, guided wave
structures such as hollow waveguides also show frequency dependent properties
which can be exploited to design a required electric or magnetic response. Here,

http://dx.doi.org/10.1007/978-3-319-28179-7_2
http://dx.doi.org/10.1007/978-3-319-28179-7_2


44 3 Implementation of Three-Dimensional Lorentz-Drude-Materials

Fig. 3.9 Rectangular hollow
waveguide
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h
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y
z

σ → ∞

μ , ε

the description of waveguide dispersion is derived in terms of effective material
parameters which can, due to the independent response to the electric and magnetic
field of a propagating wave, be combined with the characteristics of the previously
presented particles.

The dispersion relation of a rectangular hollow waveguide depicted in Fig. 3.9 for
transversal electric (TE) and transversal magnetic (TM) modes is [16]

k2
z = ω2μeffεeff = ω2με − k2

x − k2
y = ω2με −

(mπ

w

)2 −
(nπ

h

)2
. (3.34)

Here, μ and ε are the material parameters of the waveguide filling. The wave
impedance differs for the TE and TM mode and is [16]

ZTE = ωμ

kz
, (3.35)

ZTM = kz

ωε
. (3.36)

Using the relation between effective material parameters, wavenumber, and wave
impedance (2.8), (2.10), the transmission line equivalent circuit and effectivematerial
parameters can be derived for each mode.

Effective Material Parameters and Transmission Line Model for TE Modes

With (2.8) and (2.10) the effective material parameters for TE modes are

μTE = μ, (3.37)

εTE = ε −
(

mπ
w

)2 + (
nπ
h

)2

ω2μ
(3.38)

with a constant effective permeability represented by the material permeability of
the waveguide filling and a dispersive effective permittivity following the Drude
dispersion (2.24). The electric plasma frequency

http://dx.doi.org/10.1007/978-3-319-28179-7_2
http://dx.doi.org/10.1007/978-3-319-28179-7_2
http://dx.doi.org/10.1007/978-3-319-28179-7_2
http://dx.doi.org/10.1007/978-3-319-28179-7_2
http://dx.doi.org/10.1007/978-3-319-28179-7_2
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Fig. 3.10 Transmission line model for the wave propagation in a hollow waveguide: a TE modes,
b TM modes

ωpε =
√

1

με

[(mπ

w

)2 +
(nπ

h

)2
]

(3.39)

corresponds to the cutoff frequency of the TEmn mode. Hence, for TE modes, the
effective permittivity becomesnegative below the cutoff frequency andpositive above
the cutoff frequency of the TEmn mode.

The distributed impedance and admittance values of the transmission line equiv-
alent circuit are

Z ′
se,TE(ω) = jωμTE = jωμ (3.40)

representing a distributed inductance L ′
1,TE in the series branch, and

Y ′
sh,TE(ω) = jωεTE = j

(

ωε −
(

mπ
w

)2 + (
nπ
h

)2

ωμ

)

(3.41)

representing a parallel resonator in the shunt branch consisting of the distributed
shunt elements L ′

2,TE and C ′
2,TE as shown in Fig. 3.10a. This yields the equivalent

circuit elements

L ′
1,TE = μ, (3.42)

L ′
2,TE = μ

(
mπ
w

)2 + (
nπ
h

)2 , (3.43)

C ′
2,TE = ε. (3.44)

Effective Material Parameters and Transmission Line Model for TM Modes

Using (2.8) and (2.10), the effective material parameters for the TMmn mode are

μTM = μ −
(

mπ
w

)2 + (
nπ
h

)2

ω2ε
, (3.45)

εTM = ε, (3.46)

http://dx.doi.org/10.1007/978-3-319-28179-7_2
http://dx.doi.org/10.1007/978-3-319-28179-7_2
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where the effective permittivity is constant with the filling permittivity, and the
effective permeability follows the Drude dispersion (2.23). The magnetic plasma
frequency becomes

ωpμ =
√

1

με

[(mπ

w

)2 +
(nπ

h

)2
]

(3.47)

which is equivalent to the cutoff frequency of the TMmn mode.
The transmission line elements become

Z ′
se,TM(ω) = jωμTM = j

(

ωμ −
(

mπ
a

)2 + (
nπ
b

)2

ωε

)

, (3.48)

i.e. a series resonators in the series branch, and

Y ′
sh,TM(ω) = jωεTM = jωε (3.49)

representing a shunt capacitance, so that the elements in Fig. 3.10b are

L ′
1,TM = μ, (3.50)

C ′
1,TM = ε

(
mπ
a

)2 + (
nπ
b

)2 , (3.51)

C ′
2,TM = ε. (3.52)

The hollow waveguide can be loaded, e.g. with particles presented in Sects. 3.1
and 3.2, to further manipulate the magnetic or electric response to the TE or TM
mode in the waveguide [17–20].
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Chapter 4
Extraction of Dispersion Parameters

As demonstrated previously, the propagation of waves in distributed and discrete
periodic structures can be described by a set of dispersion parameters such as
wavenumber and Bloch impedance or by effective material parameters. In this
chapter, different methods to obtain these parameters from a given geometry are
introduced and investigated. These methods are either based on the analysis of the
scattering parameters of a single mode, from which effective material parameters
are calculated, or on the determination of propagating eigenmodes within a peri-
odic structure taking into account the effects of higher order modes not covered by
scattering parameter methods.

4.1 Extraction from Scattering Parameters

Scattering parameters used to extract dispersion parameters or effective material
parameters usually originate from measurements or fullwave simulations. In fullwave
simulations of a guided wave structure, the boundary conditions are set according to
the host transmission line. For three-dimensional unit cells, the boundary conditions
are set as shown in Fig. 4.1 for a plane wave excitation in z-direction. The plane wave
excitation is created by perfect magnetic conductor (PMC) boundaries at xmin and
xmax as well as perfect electric conductor (PEC) boundaries at ymin and ymax with the
tangential components of the magnetic and electric field being zero, respectively. This
is equivalent to an infinitely large lattice transversal to the propagation direction z.

4.1.1 Nicolson–Ross–Weir Extraction Method with Phase
Reconstruction

In the Nicolson–Ross–Weir (NRW) method [1, 2] it is assumed that the region
between the ports of a two-port network is filled with a homogenous material with μeff

© Springer International Publishing Switzerland 2016
M. Maasch, Tunable Microwave Metamaterial Structures, Springer Theses,
DOI 10.1007/978-3-319-28179-7_4
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Fig. 4.1 Boundary
conditions for the scattering
parameter simulation of
three-dimensional unit cells

Et = 0

Et = 0

Ht = 0Ht = 0

x

y
z

and εeff. This two-port network can be a guided wave circuit, e.g. a loaded microstrip
line, but also a three-dimensional configuration such as a split-ring resonator unit
cell. Using the relation between chain parameters and scattering parameters with
the real reference impedance Z01 = Z02 = Z0 and {Z0} = 0 [3], the characteristic
impedance and propagation constant become

Zc = ±Z0

√
(1 + S11)2 − S12S21

(1 − S11)2 − S12S21
(4.1)

and

γ l = γ np = (α + jβ)l = cosh−1 1 − S2
11 + S2

21

2S21
+ j2mπ (4.2)

where l is the length of the extracted structure consisting of n unit cells with the peri-
odicity p. The solution for the phase βl = βnp is ambiguous with integer multiples
of 2π due to the periodicity of the inverse hyperbolic cosine function for imaginary
arguments. To find the correct phase branch, causality and the Kramers–Kronig rela-
tion (2.82) can be applied [4, 5]. The non-ambiguous attenuation constant α is used
to predict the imaginary part βKK of the propagation constant. For numerical data this
can only be realized for a limited bandwidth yielding an approximation for βKK ≈ β.
However, this approximation is tolerable because only the integer value m has to be
found.

As an example, the extraction of effective material parameters is performed for
the unit cell depicted in Fig. 4.2. The effective permeability follows the Lorentz
dispersion while the effective permittivity is constant. Such a response can be created
with an SRR loaded transmission line or an SRR array in a homogenous medium.
Due to the constant effective permittivity and the resonant effective permeability and
the negative permeability region, a stop band between 5.0 and 7.1 GHz is expected.

To obtain the effective material parameters, the scattering parameters of an array
consisting of 12 unit cells (to investigate phase wrapping effects) are calculated1 and
the characteristic impedance (4.1) and propagation constant (4.2) with the unknown

1These scattering parameters usually originate from fullwave simulations or measurements where
they cannot be obtained analytically.

http://dx.doi.org/10.1007/978-3-319-28179-7_2
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Fig. 4.2 Unitcell with
Lorentz–Drude dispersion
(L1 = L0 = 1 nH,
C1 = 1 pF,
R1 = R2 = 1000 �,
C0 = 3.65 fF, p = 0.4 mm)

R1

L1 L0

C1

C0/2C0/2

p

branch parameter m can be determined. From these the effective material parameters
can be calculated with

μeff = 1

jωl
Zcγ p, (4.3)

εeff = 1

jωl

γ p

Zc
. (4.4)

For the unit cell in Fig. 4.2 this yields the phase and the effective material parameters
in Fig. 4.3 for different phase branches m = −2 · · · + 2 with the correct branch
m = 0 for the considered frequency band. The unit cell phase shift βp is ambiguous
with multiple of 2π/n = 2π/12 as expected from (4.2). This strongly influences the
effective material parameters where only the solution for m = 0 shows the correct
dispersion with a constant effective permittivity and the correct magnetic resonance
and transition frequency.

In Fig. 4.4, different extractions of the unit cell phase shift are shown for a wide
frequency band. The uncorrected dispersion is obtained without any correction of the
phase branch. Without phase correction, the phase branch depends on the implemen-
tation of the inverse hyperbolic cosine function in (4.2). Here, the extracted phase βl
is between −π and +π so that the unit cell phase shift βp lies between −π/12 and
+π/12 and a wrapping of the phase occurs near the magnetic resonance frequency at
5 and at 22 GHz. Applying the attenuation constant α in the Kramers–Kronig relation
(2.82) the phase constant βKK in Fig. 4.4 can be calculated. Since the integration lim-
its for numeric and measured data are finite, this is an approximation of the correct
phase constant, especially close to the limits of the simulation or measurement band.
However, the accuracy is sufficient to determine the correct phase branch

m(ω) = round

{ [βKK(ω) − β(ω)]l
2π

}
(4.5)

shown in Fig. 4.5.
With the corrected phase the effective material parameters can be calculated.

Figure 4.6 shows the effective material parameters of a 12 unit cell array of the
configuration in Fig. 4.2 using the uncorrected phase from Fig. 4.4. The real part of

http://dx.doi.org/10.1007/978-3-319-28179-7_2
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Fig. 4.6 Uncorrected effective material parameters of a Lorentz material extracted from 12 unit
cells
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Fig. 4.7 Effective material parameters of a Lorentz material extracted from 12 unit cells after
correction of the phase branch m from Fig. 4.5

the effective material parameters shows discontinuities near the magnetic resonance
frequency of 5 GHz. Furthermore, due to the phase wrapping at 22 GHz, the mate-
rial parameters differ from the magnetic Lorentz response and constant effective
permittivity as expected from the unit cell circuit.

Using the correct phase branch m from Fig. 4.5, the effective material parameters
in Fig. 4.7 are obtained. They show the response of a lossy magnetic Lorentz material
following (2.17) and a constant effective permittivity.

4.1.2 Consideration of Higher Order Modes in Scattering
Parameters

Since the scattering parameters of a two-port circuit describe the propagation of
only the fundamental mode, a propagation of higher order modes is not considered
in the conventional NRW method where a fullwave simulation or measurement is
performed for a single mode and a single unit cell. However, these higher order modes
are excited by discontinuities in the unit cell and can significantly contribute to the
propagation inside a lattice even if they are evanescent modes. This becomes more
important the closer geometric discontinuities are to the port planes. One possibility to
take this higher order mode coupling into account is to perform a fullwave simulation

http://dx.doi.org/10.1007/978-3-319-28179-7_2
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of a complete array of unit cells. However, this is not always possible or reasonable
due to time and memory constraints. Another approach, which is proposed here, is
to perform a fullwave simulation of a single unit cell with a multiple number of M
excitation modes in the input and output port plane yielding a 2M × 2M scattering
matrix. This is possible since the wave equation (2.7) is fulfilled for the superposition
E(z), H(z) of all higher order modes Em(z), Hm(z) so that the field distribution in
the periodic structure becomes

E(z = p) =
M→∞∑

m=1

Em(z = p) = e−jkp
M→∞∑

m=1

Em(z = 0), (4.6)

H(z = p) =
M→∞∑

m=1

Hm(z = p) = e−jkp
M→∞∑

m=1

Hm(z = 0). (4.7)

Here, M is the number of considered modes. Ideally, all higher order modes have to
be considered for the propagation inside the periodic structure.

In a fullwave simulation with multiple modes in the input and output plane of the
unit cell, scattering parameters are obtained which describe the propagation of each
mode Em and Hm and the coupling between them. After the fullwave simulation has
been performed, the unit cell can be concatenated in a circuit simulator (Fig. 4.8). The
first and last unit cell are excited by the fundamental mode with the field distributions
E1 and H1. This can, for example, be a plane wave for three-dimensional unit cells
or a guided wave mode for transmission line configurations. Due to the geometrical
discontinuities in the unit cells, higher order modes described by E2 . . . EM and
H2 . . . HM , which can propagate within the array, are excited. This is considered by
connections between the unit cells additionally to the fundamental mode 1. From
the resulting two-port scattering parameters of the array, the dispersion parameters
and effective material parameters of the structure can be extracted, e.g. applying the
NRW method (4.1) and (4.2).

As a demonstration of this method, for the cut wire unit cell depicted in Fig. 4.9
the impact of the higher order mode coupling is shown in Fig. 4.10. It shows the
dispersion diagram near the electric transition frequency obtained from an eigenmode
simulation, which takes into account all higher order modes M → ∞, in comparison
to the results obtained from a concatenation of 10 unit cells after the unit cell has been
simulated with the given number of modes in the port plane. The dispersion diagram
extracted for the fundamental (plane wave) excitation (M = 1) differs significantly

unit cell

mode 1
mode 2

mode M

mode 1 mode 1

fullwave
result

unit cell
fullwave

result

unit cell
fullwave

result

unit cell
fullwave

result

Fig. 4.8 Circuit diagram for the investigation of the higher order mode propagation. The unit cell
is the fullwave simulation result with M modes at each waveguide port

http://dx.doi.org/10.1007/978-3-319-28179-7_2
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Fig. 4.9 Cut wire unit cell
(dimensions: a = 10 mm,
d = 1 mm, g = 0.1 mm)
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Fig. 4.10 Unit cell phase
shift of a wire resonator
extracted from scattering
parameters of a 10 unit cell
array and eigenmode solver
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from the eigenmode solver result (M → ∞). This discrepancy is caused by coupling
of higher order modes, excited by the discontinuity formed by the wire. If two modes
are taken into account (M = 2), the dispersion corresponds to the eigenmode result,
i.e. for this specific configuration already two modes are adequate to describe the
dispersion characteristic with a high accuracy compared to the eigenmode result
where all higher modes (M → ∞) are considered. The Bloch impedance for this
example is not presented here. It can, however, be extracted using (4.1).

The electric and magnetic field distribution in the port plane obtained with the full-
wave eigenmode solver with M → ∞ is shown in Fig. 4.11. It represents the electric
and magnetic field of the propagating wave within an infinite lattice at a frequency
of 11.54 GHz. The field distribution does not accord to a plane wave propagation
which is assumed if only the fundamental mode with M = 1 is taken into account.
The electric field mainly has components in vertical direction parallel to the wire but
is not constant over the port plane. Furthermore, the magnetic field is not constant
over the port plane and it has additional components in the propagation direction z.
The discrepancy between the plane wave excitation and the actual propagating mode
is responsible for the shift of the dispersion diagram in Fig. 4.10.

For the given example, the relative error

ε(ω) = k − keigenmode

keigenmode
(4.8)

over the frequency is shown in Fig. 4.12 for different numbers of considered modes
in a 10-unit cell array. The largest error occurs close to the transition frequency of
11.52 GHz. If only the fundamental mode is considered, the error in the frequency
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(b)(a)

Fig. 4.11 Eigenmode field solution of the unit cell from Fig. 4.9 at 11.54 GHz: a Electric field
distribution, b Magnetic field distribution

Fig. 4.12 Relative error
compared to the fullwave
eigenmode solution of 10
unit cells and different
numbers of considered
modes

11.55 11.6 11.65 11.7

10−4

10−2

100

f/GHz

re
l.

er
ro

r
ε

fund.
2
5
10

band of interest is larger than 10 % compared to the fullwave eigenmode result. By
considering only one more mode, the error can be decreased by a factor of 10.

A second parameter that affects the accuracy of this method is the number of
unit cells used in the concatenation to imitate the perfect periodic structure. The
truncation of the array causes an error which can be expressed by the mean squared
error normalized to the number N of investigated frequency points

Sε = 1

N

√√
√√

N∑

n=1

ε(ωn)2 = 1

N

√√
√√

N∑

n=1

(
k(ωn) − keigenmode

keigenmode

)2

. (4.9)

Figure 4.13 shows Sε for different unit cell numbers. Up to 6 unit cells, the total
error is reduced by a factor of 10 due to the better approximation of the periodic
array. For 7 unit cells and above the total error increases. This error is caused by the
NRW extraction method and is introduced by the phase wrapping that occurs in the
considered frequency band for longer arrays. Since kp is numerically extracted from
scattering parameter results, numerical errors occur which become significant close
to the phase wrapping points, i.e. close to phase shifts of integer multiples of 2π .
The higher the number of concatenated unit cells, the more wrapping points occur in
the considered frequency band which increases the total error of the extracted phase.
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Fig. 4.13 Normalized mean
square error compared to the
fullwave eigenmode solution
for 2 considered modes and
different unit cell numbers
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For highly accurate predictions of the dispersion properties, care has to be taken
concerning the error source. Errors can originate from the disregard of higher order
mode coupling or from the extraction algorithm like the NRW method in form of
numerical errors. In the case of a fullwave simulation, errors can additionally be
caused by the meshing of the unit cell geometry or numerical errors in the solution
of the discrete Maxwell’s equations during the computation.

Although errors are introduced by the truncation of the array, in the presented
example the truncation error is smaller than the error caused by neglecting higher
order modes. Furthermore, dielectric and magnetic losses can be considered with
the scattering parameter method which is not possible in most commercial fullwave
eigenmode solvers. Hence, complex dispersion parameters and complex effective
material parameters can be obtained.

4.1.3 Eigenmode Determination from Simulated Scattering
Parameters

In the previously presented method, an array consisting of an infinite number of unit
cells has to be approximated by a truncated array. The introduced truncation error
can be avoided by applying the periodic boundary condition [6]

b1 = a2e−jkp (4.10)

b2 = a1ejkp (4.11)

to the scattering transfer matrix T with

(
b1

a1

)
= T ·

(
a2

b2

)
=

(
T11 T12

T21 T22

)
·
(

a2

b2

)
, (4.12)

which contains the coupling between all considered modes. As proposed in [7–9],
by calculating the eigenmodes of the transfer matrix, the dispersion diagram of all
modes, including the superposition of the fundamental and all considered higher
order modes (4.6) and (4.7) can be obtained. ai and bi are vectors of the incident
and reflected normalized waves for each port mode. Tij are the scattering transfer
matrices for all modes between port i and port j so that the transfer matrix becomes



58 4 Extraction of Dispersion Parameters

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

b(1)
1

b(2)
1

.

.

.

b(M)
1

a(1)
1

a(2)
1

.

.

.

a(M)
1

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

T (11)
11 T (12)

11 · · · T (1M)
11 T (11)

12 T (12)
12 · · · T (1M)

12

T (21)
11 T (22)

11 · · · T (2M)
11 T (21)

12 T (22)
12 · · · T (2M)

12

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

T (M1)
11 T (M2)

11 · · · T (MM)
11 T (M1)

12 T (M2)
12 · · · T (MM)

12

T (11)
21 T (12)

21 · · · T (1M)
21 T (11)

22 T (12)
22 · · · T (1M)

22

T (21)
21 T (22)

21 · · · T (2M)
21 T (21)

22 T (22)
22 · · · T (2M)

22

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

T (M1)
21 T (M2)

21 · · · T (MM)
21 T (M1)

22 T (M2)
22 · · · T (MM)

22

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

·

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎝

a(1)
2

a(2)
2

.

.

.

a(M)
2

b(1)
2

b(2)
2

.

.

.

b(M)
2

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎠

. (4.13)

The obtained result is a vector U of eigenvalues. The propagating eigenmodes are
identified with |Um| = 1 yielding the phase kmp = ∠Um.

This method is applied to the cut wire unit cell and the extracted dispersion
diagram is shown in Fig. 4.14. Like in the multimode-circuit method above, only 2
modes are necessary to significantly increase the accuracy of the phase extraction of
this unit cell configuration, which is close to the solution obtained from the fullwave
eigenmode simulation. This is confirmed by the normalized mean squared error in
Fig. 4.15. With two considered modes, the total relative error becomes 2×10−3 while
an increase above 5 unit cells does not yield a further reduction of the error.

This approach is similar to the one described in Sect. 4.1.2. The main difference is
the boundary condition of the scattering parameter matrix. Since a periodic boundary
condition is applied, i.e. implicitly the array is infinitely long, a truncation error does
not occur. However, an extraction of the Bloch impedance and hence, of effective
material parameters, is not possible.

Fig. 4.14 Unit cell phase
shift obtained with an
eigenmode analysis of the
multimode scattering
parameters
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Fig. 4.15 Normalized mean
squared error compared to
the fullwave eigenmode
solution for different unit
cell numbers
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4.2 Fullwave Eigenmode Computation

To consider all higher order modes in an infinitely long periodic lattice, the periodic
boundary condition (4.6)–(4.7) can be applied in the fullwave simulation of a sin-
gle unit cell. With a varying unit cell phase shift kp = −π . . . π between the unit
cell interface planes at zmin and zmax, the field distribution and the eigenfrequencies
of the propagating modes can be calculated. With the eigenfrequencies, the disper-
sion diagram can be constructed. On the other hand, the field distribution at each
eigenfrequency can be used to extract information about the Bloch impedance or
the effective material parameters by the use of averaging methods. Furthermore, this
field information can be used to compute the farfield of periodic antennas, such as
leaky-wave antennas or transmit arrays.

4.2.1 Bloch Impedance Extraction by Field Averaging

The fullwave eigenmode solution of a unit cell provides information about the dis-
tribution of the electric and magnetic fields in each point of a unit cell at a certain
eigenfrequency. However, a set of Bloch parameters ZB and k or effective material
parameters μeff and εeff, which describe the response of the complete unit cell, is
preferred. For that, a homogenization or averaging of the local electric and magnetic
responses has to be performed yielding the field components 〈E〉, 〈D〉, 〈H〉, and 〈B〉
which now represent the electromagnetic response of the complete unit cell. These
averaged fields can be used to calculate the effective material parameters of the unit
cell or the Bloch impedance.

An overview over different field homogenization methods and the averaged field
components is depicted in Table 4.1 for a Bloch wave propagating in z-direction.
These homogenization methods rely on averaging different field components and flux
components to obtain either the effective material parameters or the Bloch impedance
from which, with the periodic boundary condition and its phase shift, the effective

Table 4.1 Overview of field averaging methods to extract the Bloch impedance or the effective
material parameters

Pendry [10] Smith [11] Simovski [12, 13] Acher [14, 15] Boscolo [16, 17]

ZB –
1
lx

∫
lx

E·ds
1
ly

∫
ly

H·ds

∫
Az

Et dA
∫

Az
Ht dA

–
∫

Az
zBRe{S̄z}dA

∫
Az

Re{S̄z}dA

μeff

1
Ay

∫
Ay

B·dA
1
ly

∫
ly

H·ds
– –

1
V

∫
V BydV

1
Ax

∫
Ax

HydA
–

εeff

1
Ax

∫
Ax

D·dA
1
lx

∫
lx

E·ds
– –

1
Ax

∫
Ax

Dx(r)dA
1
V

∫
V Ex (r)dV

–



60 4 Extraction of Dispersion Parameters

Fig. 4.16 Lines and surfaces
for the integrals of the field
averaging methods

x
y

z

lx

ly

Ax

Ay
Az

material parameters can be calculated. The surfaces and edges of the unit cell used
in the averaging are depicted in Fig. 4.16.

The field averaging method by Pendry et al. [10] uses averages of the local fluxes
D(r, ω) and B(r, ω) over the unit cell surfaces and averages of the local fields E(r, ω)

and H(r, ω) on the unit cell edges to directly obtain the effective material parameters.
The flux integration surfaces cannot intersect with conducting elements such as
continuous wires [11]. This is a crucial limitation of this method because the effective
material parameters of unit cells containing a conducting connection between unit
cells in x-direction cannot be calculated.

This limitation is overcome by the approach by Smith et al. [11] where the Bloch
impedance is calculated by the ratio of the line averages of E(r, ω) and H(r, ω).
However, this method requires an infinite lattice in the xy-plane. In bounded structures
such as hollow waveguides this method fails since the line integral of the electric
field of the unit cell edges yields zero.

As the method by Smith, the approach by Simovski et al. [12, 13] uses averaged
electric and magnetic fields to calculate the Bloch impedance for an excitation with
a linear wave. Averaging of the transversal components of E(r, ω) and H(r, ω)

is performed over the input plane Az of the unit cell. This method fails for the
propagation of higher order modes; e.g. for the TE20 mode in a hollow wave guide,
the integration of the electric fields over the input plane yields a zero average field.

The method by Acher et al. [14, 15] is (as Pendry’s approach) based on the ratio
of averaged flux- and field values to directly calculate effective material parameters.
Averaging is performed over the unit cell surfaces and volume. Since the integration
surface of the flux D(r, ω) is the same as in Pendry’s approach, it shows the same
limitations concerning a conductive element between different unit cells.

The method by Boscolo [16] originally has been applied to two-dimensional
photonic crystals. It relies on the point wise calculation of the local impedances
zB(r) which are then averaged over the input width. Similarly, the extension for a
three-dimensional unit cell [17]
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ZB =
∫

Az
zB(r, ω)S̄z(r, ω)dA
∫

Az
S̄z(r, ω)dA

(4.14)

employs the local impedances

zB(r, ω) = Et(r, ω)

Ht(r, ω)
= 2S̄z(r, ω)

|Ht(r, ω)|2 = |Et(r, ω)|2
2S̄z(r, ω)

(4.15)

in the Az-plane which are averaged with the z-component of the time averaged
Poynting vector

S̄(r, ω) = 1

2
E(r, ω) × H∗(r, ω) (4.16)

in the Az-plane as weighting function.
As an example, the method of Boscolo is applied to the cut wire unit cell from

Fig. 4.9. The field distribution is calculated using the fullwave eigenmode solver for
different unit phase shifts as described above in Sect. 4.2. A comparison of the dis-
persion diagram obtained with the Nicolson–Ross–Weir method and the eigenmode
simulation is shown in Fig. 4.17 with a good agreement between both methods. From
the field results for each eigenmode, the Bloch impedance is calculated using the
averaging method by Boscolo and compared to the methods by Smith and Simovski,
respectively. From the phase shift and the real part of the Bloch impedance, the real
part of the effective material parameters is obtained.

Figure 4.18 shows the extracted Bloch impedance and effective material para-
meters using the methods by Smith, Simovski and Boscolo compared to the result
obtained with the NRW extraction. The best agreement can be seen between the
methods of Smith and Boscolo. The method by Simovski shows a strong difference
due to the partial cancellation of higher order modes. However, a general conclusion
about the preferred averaging method cannot be drawn because results depend on
the geometry and related to that, the numerical errors for the specific excitation and
geometry.

A common drawback of averaging methods based on eigenmode results is that
losses cannot be taken into account. Furthermore, these methods provide informa-
tion about the transmission bands. However, since only the field distribution of

Fig. 4.17 Dispersion
diagram of the cut wire
unitcell obtained with
different extraction methods
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Fig. 4.18 Real part of the effective material parameters of the cut wire unit cell obtained with
different field averaging methods
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Fig. 4.19 Overview of extraction methods based on the simulation of scattering parameters and
eigenmode field of a single unit cell

propagating eigenmodes can be calculated with a fullwave eigenmode method, Bloch
parameters within the stop bands cannot be determined.

A comprehensive investigation and comparison of different field averaging meth-
ods can be found in [18].

A summary of the presented extraction methods is depicted in Fig. 4.19. A full-
wave simulation of the unit cell geometry is performed. This yields scattering parame-
ters for all considered modes (approximation with M < ∞) or the field distribution of
eigenmodes (M → ∞). The NRW method for a single mode and single unit cell does
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not consider the propagation of any higher order modes and yields complex disper-
sion parameters, i.e. information about propagation bands and stop bands including
losses. The eigenmode method for multiple modes takes higher order mode coupling
into account but does not yield any information about the Bloch impedance or dis-
persion properties within the stop band. The NRW method for arrays with multiple
modes that has been developed within this work considers losses and yields disper-
sion parameters in the propagation bands and stop bands based on the simulation of
a single unit cell.

The eigenmode fullwave methods consider all higher order modes. The purely
real unit cell phase shift is the boundary condition yielding the eigenfrequencies and
the associated electric and magnetic field distribution. However, due to the periodic
boundary condition with a purely real wavenumber, losses and the stop band behavior
cannot be determined. Using field averaging methods, the real part of the Bloch
impedance and with that, the real part of the effective material parameters, can be
extracted.

For applications where the knowledge of the complex dispersion parameters, i.e.
complex wavenumber and Bloch impedance or complex effective material parame-
ters, is important, only the NRW methods for a single and multiple modes yield
sufficient results with the downside of an approximation of the higher order mode
propagation. On the contrary, if a precise prediction of the field distribution including
higher order modes is of interest, the eigenmode fullwave simulation is preferably
used. The extraction of the Bloch impedance by field averaging of the eigenmode
field results strongly depends on the geometry of the particle and host medium.

4.2.2 Farfield Computation from Eigenmode Results

The farfield computation of long periodic arrangements like leaky-wave antennas
with a high level of geometric details but a large overall size often provokes problems
regarding simulation time and memory limitations if the structure is simulated in
the form of a complete array. On the other hand, a scattering parameter simulation
of a single unit cell can provide information about the dispersion characteristics
and nearfield distribution but it does not consider higher order mode coupling. To
avoid such limitations, conventional farfield transformation approaches to predict
the radiation pattern of leaky-wave antennas presented in [19] consider an isotropic
point source or omit the field distribution of a single element [20], which reduces the
accuracy of the farfield pattern result.

Here it is proposed to employ the field distribution of the eigenmodes as elements
for the farfield transformation. Information about the wave propagation in an infi-
nite periodic array can be obtained using a fullwave eigenmode solver including the
electric and magnetic nearfield distribution and higher order mode coupling between
adjacent unit cells. The field distribution of the unit cell is concatenated in the direc-
tion of the guided wave to construct the near field distribution of a large array from
which the detailed farfield pattern can be obtained [21].
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Fig. 4.20 Planar unit cell with periodic boundary condition in z-direction

Due to the periodicity of the unit cell in z-direction as shown in Fig. 4.20, electric
and magnetic fields follow (4.6)–(4.7) so that with losses, expressed by the attenuation
constant α, the fields of the guided wave are

E, H(x, y, z) = E, H(x, y, z − mp) · e−(α+jβ)mp. (4.17)

Thus, if the field distribution E0 and H0 of a single unit cell is known from the
eigenmode simulation, the field distribution of an array consisting of N unit cells can
be determined by

E, H(x, y, z + np) =
N−1∑

n=0

E0, H0(x, y, z) · e−(α+jβ)np. (4.18)

For a leaky-wave antenna as shown in Fig. 4.21, the field distribution E, H(x, y0, z)
in the aperture plane y = y0 is Fourier transformed to obtain the plane wave spectrum
[22]

f(kx, kz) =
∫

Np

∫

w
E(x, y0, z)ej(kxx+kzz)dxdz (4.19)

and the electric farfield pattern of the leaky-wave antenna with

y

z

waveguiding structure

ϕ ψ

β0

x

θ

β

Fig. 4.21 Leaky-wave antenna with guided wave propagating in z-direction
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Ẽ(r, θ, ϕ) = j
k0e−jk0r

2πr
f(kx, kz) cos θ. (4.20)

Here, k0 is the wavenumber in free space and r is the distance from the antenna in the
farfield. Hence, to calculate the farfield pattern of periodic leaky-wave antennas, it is
possible to use the result of the field distribution E0, H0 obtained from an eigenmode
simulation of a single unit cell instead of simulating an array consisting of a large
number of unit cells. This method considers the full higher order mode coupling.
However, usually fullwave eigenmode solvers cannot take metallic, dielectric, or
radiation losses into account so that it has to be set manually for the calculation of
the farfield pattern. Futhermore, truncation effects of the excitation in the first and
last unit cell are not taken into consideration, since the simulated unit cell is part of an
infinitely long periodic array. For most applications, however, the unit cell number of
the leaky-wave antenna is sufficiently large so that the excitation merely influences
the radiation pattern.

The farfield pattern (4.20) can be rewritten to the form

Ẽ(r, θ, ϕ) = j
k0e−jk0r

2πr
cos θ · f0(kx, kz)

N−1∑

n=0

enp(jk0 sin θ sin ϕ−α−jβ) (4.21)

showing that the plane wave spectrum

f0(kx, kz) =
∫

p

∫

w
E0(x, y0, z)ej(kxx+kzz)dxdz (4.22)

of the unit cell is multiplied with the array factor

AF =
N−1∑

n=0

enp(jk0 sin θ sin ϕ−α−jβ) (4.23)

which contains the unit cell phase shift βp and leakage constant α as complex weight-
ing term.

The direction of the main beam of a leaky-wave antenna depends on the phase
constant of the fundamental guided wave and is given by

ψ = sin−1 β

k0
= sin−1 βp

ωp/c0
. (4.24)

Radiation is only possible in the fast wave region, i.e. for |vp|/c0 = k0/|β| > 1 since
only under this condition (4.24) yields a real valued main beam direction [23].

Application Example: Investigation of a Loaded CPW Transmission Line

The developed farfield computation method is applied to the unit cell depicted in
Fig. 4.22 consisting of a coplanar waveguide (CPW) loaded with a series tank in
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Fig. 4.22 Top view of the top- and bottom gold metallizations of the investigated unit cell
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Fig. 4.23 Dispersion diagram of the investigated unit cell obtained with the fullwave eigenmode
solver
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Fig. 4.24 Normalized electric nearfield distribution of a single unit cell at 30.2493 GHz

the series- and shunt branch. The dispersion diagram in Fig. 4.23 is obtained from
the fullwave eigenmode computation of a single unit cell in CST Microwave Studio
taking into account the propagation of all higher order modes. Due to the Drude
dispersion of the effective permeability (2.23) and the Lorentz resonance of the
effective permittivity (2.18), a narrow backward wave band occurs followed by a stop
band and a forward wave transmission band. Radiation is possible in the fastwave
region between 29.5 and 35 GHz with a frequency dependent radiation angle between
−90◦ and +90◦ with respect to the broadside.

The obtained electric field distribution of the unit cell is shown in Fig. 4.24 for a
unit cell phase shift of −30◦ and an eigenfrequency of 30.2493 GHz, respectively. It
can be seen that the distribution of the z-component is nearly constant whereas the

http://dx.doi.org/10.1007/978-3-319-28179-7_2
http://dx.doi.org/10.1007/978-3-319-28179-7_2
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Fig. 4.25 Normalized electric nearfield distribution for backward wave propagation at 30.2493
GHz (15 unit cells, αp = 0.01)

x-component shows a strong variation with an anti-symmetric distribution with
respect to the z-axis (the propagation direction). This indicates that the main radia-
tion in the xz-plane will exhibit mainly a ϕ-component while in the θ -direction no
significant radiation occurs.

In Fig. 4.25, the electric field distribution of 15 unit cells after the concatenation
and multiplication with the phase and leakage term is depicted. The leakage term
is set to αp = 0.01. Due to the non-zero α, a slight attenuation of the propagating
wave can be observed. Furthermore, it can be seen that with βp = −π/6 the guided
wavelength

λg = 2πp

|βp| (4.25)

confirms the theoretical value of 27 mm. As before for the unit cell, the x-component
of the electric field has an opposite sign with respect to the propagation direction and
this component cancels out in the farfield.

Using (4.19) and (4.20), the field distribution in Fig. 4.25 is transformed yielding
the electric field strength Ẽ(r, θ, ϕ) in the farfield region from which the directivity
can be computed [22].

The obtained directivity pattern of the θ - and ϕ-component is shown in Fig. 4.26
for eigenfrequencies in the backward wave transmission band, at the stop band, and
in the forward wave transmission band. As expected from the nearfield distribution
of the electric field, the main radiation in the xz-plane is in the ϕ direction for
all investigated frequencies because the vertical θ -components of the electric field
are canceled out in the symmetry plane. Furthermore, in the backward wave band at
30.2493 GHz, the main radiation direction in the xz-plane is −22◦, which corresponds
to the theoretical value predicted by (4.24) for a unit cell phase shift of −30◦. If the
frequency is increased to the lower end of the stop band at 30.2949 GHz, the main
beam points in the broadside direction due to the zero phase constant. A further
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Fig. 4.26 Directivity of a leaky-wave antenna with 15 unit cells and αp = 0.01 at different
frequencies

increase of frequency above the stop band to the forward wave transmission band
yields a unit cell phase shift of +30◦ resulting in a theoretical main beam direction
of 20.89◦ which is confirmed by the directivity plot.



4.2 Fullwave Eigenmode Computation 69

Fig. 4.27 Directivity in the
xz-plane for different unit
cell numbers
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The applicability of this approach in terms of varying unit cell numbers is demon-
strated for the unit cell in Fig. 4.22 in the backward wave band at 30.2493 GHz.
The directivity in the xz-plane is shown in Fig. 4.27 for 20, 40, and 60 unit cells
and a leakage factor of αp = 0.01. As expected from the previous investigations,
the main beam direction is ψ = −21◦. Furthermore, with a larger unit cell num-
ber, the directivity is increased while the half-power beam width is decreased. Due
to the power leakage along the antenna, the ratio of the effective and the physical
aperture becomes smaller and the main part of the energy is radiated along the first
unit cells of the antenna while in the last elements no energy is available for radia-
tion. Hence, above a length of 50 unit cell, an increase of the element numbers does
not yield a significant performance improvement. This is confirmed by the results in
Fig. 4.28 where the directivity and half-power beam width of the ϕ-component in the
xz-plane are shown for a varying array length. A minimum half-power beam width
of 3◦ and a maximum directivity of 25 dBi are expected for the given configuration
at 30.2493 GHz.

A comparison of the farfield pattern in the xz-plane obtained using different meth-
ods is shown in Fig. 4.29. The operation frequency of the leaky-wave antenna consist-
ing of 30 unit cells is in the backward wave band at 30.2493 GHz and the leakage is
set to αp = 0.01. In [19] the array factor (4.23) is used to approximately predict the
farfield pattern of one- and two-dimensional leaky-wave antennas. This approach
shows a low accuracy for scanning angles ψ and observing angles ϕ, θ close to
the axial direction because the unit cell pattern is omitted. This is improved by the
method in [20] where an assumption of the nearfield distribution of the unit cell
has to be made. With a uniform field distribution and a point source, the predicted
side lobe level is improved in comparison with the array factor approach. Taking the

Fig. 4.28 Directivity and
half-power beam width in
the xz-plane for different unit
cell numbers

20 40 60
0

10

20

n

D
ϕ
/d

B
i,

H
PB

W
/d

eg Dϕ
HPBW



70 4 Extraction of Dispersion Parameters

Fig. 4.29 Comparison of
different farfield
computation methods
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eigenmode field solution as excitation field [21], the radiation pattern close to the
main beam is only marginally changed and the side lobe response close to the axial
direction differs compared to the excitation with a point source or a uniform field
distribution.

With (4.24) the frequency dependent radiation angle ψ in Fig. 4.30 can be calcu-
lated. The beam can be scanned in the fast wave regions of the backward- and forward
wave transmission band between −90◦ and +90◦ whereas in the stop band and in
the slow wave regions below 29 GHz and above 35.5 GHz no radiation occurs. This
analytic equation fails for large scanning angles which can be seen in comparison
with the eigenmode transformation method. For angles close to the axial direction,
the obtained scanning angle ψ becomes smaller than predicted by the analytic and
the array factor approach.

With the presented method, the farfield radiation pattern of long periodic antennas
can be investigated in an efficient manner without sacrificing polarization informa-
tion. The time consuming fullwave simulation of a single unit cell element has to be
performed once for each phase shift of interest to obtain the eigenfrequency and the
nearfield distribution. Afterwards, the response of the complete antenna can be inves-
tigated without any further fullwave simulations. For the given geometry in Fig. 4.22,
the duration of the fullwave simulation of a single unit cell consisting of 205,000
hexahedral meshcells is 35 min. The concatenation, weighting, and transformation
to obtain the farfield pattern of an array of 70 unit cells is performed in 17 s.

The presented transformation method is not limited to guided radiative structures.
It is also possible to apply this technique to large arrays which are periodic transversal
to the incident wave propagating in y-direction. In such a case, the periodic boundary
condition is applied in x- and z-direction where the phase shift Δφx and Δφz between

Fig. 4.30 Extracted
radiation angle using the
analytic solution (4.24), the
array factor method, and the
eigenmode method
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each unit cell boundary yields the angle of the transmitted wave. Then (4.19) and
(4.20) can be used to determine the pattern of the transmitted wave in the farfield
region.
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Chapter 5
Tunable Transmission Line Metamaterials

Transmission line metamaterials using the possibility of forward- and backward
wave propagation or the independent design of the phase and impedance [1–5], have
a broad range of potential applications. Such artificial transmission lines can be
designed with a large positive or negative phase shift making it possible to realize
compact filters [6], phase shifters [7, 8], and couplers [3, 9]. Leaky-wave antennas
with a frequency tunable radiation covering 180◦ including the broadside direction
in its fundamental spatial harmonic have been demonstrated [10–12]. In [13] the
zeroth-order resonance is exploited to design a compact transmission line resonator.
For applications such as microstrip antennas [14] or delay lines for passive RFID
devices [15], the low phase- and group velocity can be exploited to design very
compact components.

By employing transmission linemetamaterials with lumped elements based on the
theoretical considerations in Chap. 2 it is possible to tailor the electric and magnetic
response independently of each other for a desired application. Hence, within the
pysical limitations like causality andpassivity, arbitrary dispersion characteristics can
be designed. Furthermore, with tunable elements, components with reconfigurable
properties can be realized, such as voltage tunable filters, leaky-wave antennas or
transmission linematching networks. Similarly, it is possible to use sensing elements,
e.g. temperature dependent capacitors, for sensor applications.

In this chapter, transmission line metamaterials with tunable dispersion properties
are presented using different unit cell configurations and voltage tunable elements,
such as semiconductor varactors and liquid crystal. Apart from dispersion charac-
teristics, technological constraints and realizability, especially for voltage tunable
designs that require a biasing network, are aspects that are taken into account yield-
ing artificial transmission lines with tunable properties and low parasitic effects.

© Springer International Publishing Switzerland 2016
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5.1 Tunable Double Series Transmission Line

In [16, 17], the double series (DS) and double parallel (DP) unit cells have been
investigated and compared to the CRLH and D-CRLH [18] unit cell concerning
their dispersion properties. In the double series configuration, the capacitors can be
replaced by varactors so that with a simple biasing network a tunable transmission
line can be implemented and the phase and impedance can be tuned for the application
in transmission line components.

Figure5.1a shows the modified DS unit cell with ideal distributed elements,
i.e. without spatial dispersion. It consists of a series resonator in the series and
shunt branch. Compared to [17] the shunt capacitance C ′

0 representing the dielectric
response of the host medium is added to the unit cell circuit to provide a causal
response with the purely real effective material parameters shown in Fig. 5.1b. The
effective permittivity shows aLorentz dispersion (2.17)with a negative value between
the electric resonance

ω0ε = 1
√

L ′
shC

′
sh

(5.1)

and the electric transition frequency

ωtε =
√

1

L ′
shC

′
sh

+ 1

L ′
shC

′
0

(5.2)

while the effective permeability follows the Drude dispersion (2.24) with a negative
effective permeability below the magnetic plasma frequency

ωpμ = 1
√

L ′
seC

′
se

. (5.3)

For a narrow frequency band close to the electric resonance frequency and far from
the electric transition frequency,C ′

0 can be neglectedwhich is done from this point on.
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Fig. 5.1 Double series transmission line: a Modified unit cell configuration with the host material
capacitance C ′

0, b Effective material parameters for the lossless case with ω0ε = 0.5ωpμ
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Fig. 5.2 Normalized propagation constant and line impedance of an ideal lossless double series
transmission line with ω0ε = 0.5ωpμ

The electric transition frequency is shifted to high frequencies out of the frequency
band of interest so that the propagation constant can be approximated by

γ = α + jβ ≈ ±
√

L ′
se

L ′
sh

· ω2 − ω2
pμ

ω2 − ω2
0ε

(5.4)

and the line impedance by

Zc = Rc + j Xc ≈ ± j

ω

√
L ′
seL ′

sh(ω
2 − ω2

pμ)(ω2 − ω2
0ε). (5.5)

The frequency response of the propagation constant and the line impedance are
shown in Fig. 5.2. Between ω0ε and ωpμ, both μ′

eff and ε′
eff are negative resulting in a

backward wave band with β < 0. Atωpμ the effective permeability becomes positive
yielding a stop band for higher frequencies. For frequencies below ω0ε, the effective
permittivity becomes positive while the effective permeability is negative resulting
in a stop band that delimits the lower cutoff frequency of the transmission band.

In the propagation constant (5.4), a zero and a pole exist at at ωpμ and ω0ε,
respectively. Since the slope

∂β

∂ω

∣∣∣∣
α=0

= 1

vg
(5.6)

has to be positive for the case of low losses, the frequency order of ωpμ and ω0ε sets
the sign of the square root in (5.4) so that

(i) ωpμ < ω0ε ⇒ β > 0, α = 0,

(ii) ωpμ > ω0ε ⇒ β < 0, α = 0, (5.7)

(iii) ωpμ = ω0ε ⇒ β = 0, α > 0.

For the case ωpμ = ω0ε, the zero and pole of γ as well as its frequency dependency
cancel out so that γ becomes constant and purely real for all frequencies. By sepa-
rately tuning the zero and pole of γ , the dispersion can be tuned to create either a
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Fig. 5.3 Double series unit
cell with separately tunable
series- and shunt branch
including the resistive
biasing network
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Lsh

Csh

p
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backward or forward wave propagation band with β �= 0 and α = 0 or to a stopband
configuration with β = 0 and α > 0.

Implementation of the Tunable Unit Cell

To independently tune the magnetic and electric response, tunable elements have to
be added to the unit cell. Since voltage tuning is practical and desirable for a number
of applications, the distribution of a tuning voltage and the realization of the necessary
biasing network are important issues in the design process. A double series unit cell
configuration with varactor diodes as tunable elements is shown in Fig. 5.3 including
the necessary DC blocking capacitorCse1 and a resistive biasing network represented
by RDC. This configuration is chosen in such a way that the implementation of the
tunability is possible with a minimum number of additional elements. Furthermore,
only two tuning voltages VDC1 and VDC2 are necessary yielding the varactor voltages

Vse = VDC1 − VDC2, (5.8)

Vsh = VDC2. (5.9)

To demonstrate the proposed tuning of the DS unit cell with a forward- and
backward wave propagation, a prototype is designed, fabricated, and measured for a
frequency of 2.5GHz. For such frequencies, a number of semiconductor varactors are
available. Here, the varactor diode Infineon BB857 is used due to its low resistivity
and high self resonance. Measurements of the varactor on Rogers RO5880 substrate
at 2.5GHz yield a series inductance of 1.5nH, and a series resistance of 2.6�. All
simulations of the unit cell and the artificial transmission line are carried out using
the circuit simulator of AWRMicrowave Studio. Measured scattering parameters of
all lumped elements are used in the simulation while microstrip sections, connection
pads, and vias are represented by models based on fullwave simulations.

The layout of theDS line inmicrostrip technology is shown in Fig. 5.4a. The center
line contains the varactor diodes with Cse2 and the DC blocking capacitors Cse1. The
series inductance Lse is determined by the inductance of the varactor diodes and the
series inductance of the microstrip host line. The shunt branch is implemented by
the varactor diode with Csh which is connected to the ground layer using a via. Like
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Fig. 5.4 Voltage tunable double series transmission line: a layout of the tunable DS line, red:
varactors Cse2, Csh, blue: DC blocking capacitors Cse1, green: biasing resistors RDC, b photo of the
manufactured prototype with 6 unit cells

in the series branch, the inductance Lsh is determined by the varactor inductance and
the connection line to signal and ground. To reduce the coupling between the shunt
branches in adjacent unit cells, their orientation is altered in each unit cell.

As substrate Rogers RO5880 with a thickness of 0.787mm is used. The complete
prototype in Fig. 5.4b consists of 6 unit cells with a total length of 33mm. A 20mm
microstrip section at the input and output port is used for connecting a microstrip
test fixture for characterization.

To set the DS unit cell to forward or backward wave propagation, the condition

Lse

1/Cse1 + 1/Cse2
= 1/ω2

pμ = LshCsh = 1/ω2
0ε = 1/ω2

balanced (5.10)

has to be fulfilled for the medium capacitor value of the varactors so that ωpμ and ω0ε

can be shifted into opposite direction to create either a positive or negative sign for
the phase constant β, depending on the cases (5.7). The lumped element values of the
unit cell are Lse = 2.8nH, Cse = 0.49 . . . 4.9pF, Lsh = 3.1nH, Csh = 0.5 . . . 6.5pF.
With these values, a theoretical tuning of the magnetic plasma frequency between
1.36 and 4.3GHz and a tuning of the electric resonance frequency between 1.12 and
4.0GHz is possible.

The simulated unit cell phase shift in Fig. 5.5 shows how for different tuning
voltages the cutoff frequencies of the transmission band can be independently tuned
and the sign of the phase constant can be changed. With a constant series voltage
Vse = 0V and an increasing shunt voltage Vsh, the lower cutoff frequency of the
forward wave transmission band is fixed at 1GHz while the upper cutoff frequency
is shifted from2.2 to 3.5GHz. For the backwardwave transmission, the series voltage
Vse = 25V yields a constant upper cutoff frequency of 3.7GHz and a decreasing
voltage Vsh shifts the lower cutoff frequency of the backward wave band from 3.2
to 1.7GHz. The unsymmetrical tuning of the cutoff frequencies is due to the series
connection of the non-tunable Cse1 and the tunable Cse2 which leads to different
minimum and maximum values of the total series- and shunt capacitance.

For the investigation of the Bloch impedance, as before for the phase investiga-
tion, one cutoff frequency of the transmission band is fixed while the second cutoff
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forward- and backward wave
operation (measured
scattering parameters are
used for all lumped
components)
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frequency is tuned. The real part of the simulated Bloch impedance for a forward-
and backward wave transmission is shown in Fig. 5.6. As for the phase shift, the
independent tuning of the cutoff frequencies can be clearly observed. At 2.5GHz
the real part of the Bloch impedance can be tuned between 2 and 40�. The cov-
ered impedance range can be optimized for a specific application by adapting the
inductance values in the series and shunt branch with lumped inductors.

Figure5.7 shows a photo of the measurement setup. A microstrip test fixture is
used to contact the double series transmission line while the DC tuning voltages are
applied directly to the biasing lines.

A comparison of the simulated and measured unit cell phase shift is shown in
Fig. 5.8 for the minimum and maximum tuning voltages of each varactor. Due to
the use of measured scattering parameters of the lumped elements, the agreement is
good in the transmission band. At 3GHz a symmetric, continuous tuning of the unit
cell phase shift is possible between at least −0.3π and +0.3π .
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Fig. 5.7 Microstrip characterization setup for the measurement of the tunable double series line
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Fig. 5.8 Comparison of simulated and measured unit cell phase shift for different tuning states

Fig. 5.9 Measured
transmission for forward
wave propagation with
Vsh = 10 . . . 25V, Vse = 0V
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Figures5.9 and 5.10 show the measured forward transmission for different tuning
states and for the forward and backward wave operation, respectively. For Vsh > Vse

(Fig. 5.9) β becomes positive, i.e. a forward wave transmission band occurs. As Vsh is
increased with Vse = 0V kept constant, the upper transmission band limit is shifted
to higher frequencies while the lower band limit is constant at 1GHz. For Vsh < Vse

(Fig. 5.10) β becomes negative and the transmission band has a backward wave
characteristic. A decreasing voltage Vsh and a constant voltage Vse = 25V keeps the
upper band limit constant at 4.2GHz and shifts the lower transmission band limit to
lower frequencies.
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Fig. 5.10 Measured
transmission for backward
wave propagation with
Vsh = 0 . . . 15V, Vse = 25V
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5.2 Liquid Crystals for Voltage Tunable Components

For the double series transmission line in the previous section, semiconductor var-
actors have been used to introduce a continuous voltage tuning of the dispersion
characteristics. Such varactor diodes limit the operation frequency to about 10GHz.
To overcome this frequency limitation, liquid crystals (LC) are applied in this work to
realize planar and three-dimensional metamaterial structures with tunable properties.

Due to their continuous tunability and low loss at frequencies above 10GHz, liquid
crystals have been applied in numerous voltage tunable components for frequencies
up to the mm-wave region, such as voltage tunable phase shifters [19], reflectarrays
[20, 21], and frequency selective surfaces [22]. Furthermore, several planar and
three-dimensional metamaterials at frequencies up to 30GHz using LC, such as
magnetically tunable omega resonators [23], voltage tunable, metamaterial based
frequency selective surfaces [24], or tunable leaky-wave antennas [25, 26], have
been presented.

Figure5.11 shows the orientation of rod-like LC molecules for different phases,
i.e. different temperatures. The orientational order parameter [27, 28]

|S| =
〈
3

2
cos2 θ − 1

2

〉
(5.11)

describes the (temporal or spatial) average of the angle θ between each rod-likemole-
cule and the average direction of all molecules (the director n). At low temperatures,
the molecules align in a crystalline order where their position is fixed. All molecules

crystalline nematic isotropic
S= 1 0< S< 1 S= 0

n n

Fig. 5.11 Different LC phases and their orientational order parameter
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are oriented in the same direction yielding a maximum order of S ≈ 1. By increasing
the temperature, the LC transforms into the nematic phase, a mesophase between
the crystalline and isotropic phase. Due to the strong intermolecular interaction, an
orientation of the molecules with the director n can be observed, but with lower ori-
entational order S. In the isotropic phase at a higher temperature, the order becomes
zero and a main orientation does not exist because the molecules can orient freely
without constraints and the bulk material shows an isotropic response.

LC is primarily used in the nematic phase since here, the molecules exhibit an
order S > 0 and a tunable main direction. Due to the rod-like structure and the
rotational symmetry, the bulk material exhibits a uniaxial anisotropy which can be
represented by the permittivity tensor

εLC = ε0R

⎛

⎝
εr,LC‖ 0 0
0 εr,LC⊥ 0
0 0 εr,LC⊥

⎞

⎠ R−1. (5.12)

The rotation matrix R describes the rotation of the director n with respect to the
electric RF field. Hence, each component of the electric RF field ERF experiences a
permittivity between εr,LC⊥ and εr,LC‖ depending on the orientation of the director n
with respect to the electric RF field.

Tuning of the director n of nematic LC can be achieved by different approaches
[28, 29]:

• Magnetically: Molecules align parallel to static magnetic field lines.
• Electrically: Molecules align parallel to static or low frequency electric field lines.
• Mechanically with an alignment layer: A layer of polyimide is processed on a
surface. This layer with a thickness of a few nanometers is mechanically rubbed
with a velvet cloth which creates grooves in the alignment layer. Molecules close
to the surface are anchored in parallel to these groves and the rubbing direction.

In practical applications, a combination of mechanical and electrical alignment
is used where the force on the molecules is the superposition of the force from the
alignment layer and the electric field. The equilibrium between these forces and the
resulting orientation between the molecules and the electric RF field can be tuned
and hence, the average bulk permittivity 〈εr,LC〉 experienced by the electric RF field
can be tuned between the perpendicular and parallel component.

The tuning of the director field is depicted in Fig. 5.12 for different DC tuning
voltages of a parallel plate capacitor including an alignment layer on the electrodes.
These electrodes are used to simultaneously apply the DC tuning voltage and the
electric RF field.With the surface area A of the electrodes and the distance d between
them, the capacitance becomes

C = ε0〈εr,LC〉 A

d
. (5.13)

Here, 〈εr,LC〉 represents the average permittivity of the entire LC layer between the
electrodes.
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Fig. 5.12 Director orientation in a varactor with alignment layer for different DC tuning voltages
VDC: a without a DC voltage, b below the saturation voltage, c above the saturation voltage

The alignment layer anchors the molecules close to the surface and forces them
to orient parallel to the surface. Without a tuning voltage, due to the molecule inter-
action, molecules further from the surface follow this orientation (Fig. 5.12a) and
the average permittivity is 〈εr,LC〉=εr,LC⊥. If the DC voltage is increased above the
threshold voltage Vth, molecules experience two orientation forces: the mechanical
force from the alignment layer and the force from the electric field. In the equi-
librium, molecules close to the alignment layer align parallel to the surface while
elements in the center between the electrodes orient parallel to the electric field
(Fig. 5.12b). The average permittivity is εr,LC⊥ < 〈εr,LC〉 < εr,LC‖. If the voltage is
further increased above the saturation voltage Vsat, the electric force on all molecules
becomes larger than the mechanical force and all molecules, except the ones close
to the alignment layer, are aligned parallel to the electric field (Fig. 5.12c) so that the
average permittivity becomes 〈εr,LC〉 ≈ εr,LC‖.

The general voltage dependence of the director orientation α and the average LC
permittivity is shown in Fig. 5.13. For small voltages, the force by the alignment
layer is larger than the electric force from the applied tuning voltage. If the tuning
voltage is increased above the threshold Vth, the main orientation is caused by the
electric force. Above the saturation voltage Vsat, all molecules are aligned parallel to
the applied electric field and the average permittivity reaches its maximum. Detailed
descriptions of methods to calculate the director orientation can be found in [30–32].

Fig. 5.13 General voltage
dependence of the average
LC bulk permittivity
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The LC used in this work is the commercial mixture GT3-23001 byMerckKGaA.
At room temperature and at a frequency of 30GHz its dielectric parameters are
εr,LC⊥ = 2.47, εr,LC‖ = 3.16, tan δLC⊥ = 0.0151, tan δLC‖ = 0.0033. Investigations
of this LCmixture have shown a significant anisotropyΔεr,LC up to a frequency of at
least 4THz [33, 34]. Comprehensive information about the manufacturing process
of different microwave components using LC can be found in [20, 35–37].

5.3 Tunable Artificial Transmission Line
Using Liquid Crystal

The following tunable transmission line with separately tunable series and shunt
branch, based on liquid crystal material, is designed for an operation frequency of
30GHz. Alignment of the LC molecules, i.e. tuning, is realized electrically and
magnetically to investigate the influence of the resistive biasing network on the RF
response.

The basic unit cell with LC varactors is shown in Fig. 5.14 which is a symmetric
configuration of the previously presented double series unit cell including the para-
sitic shunt capacitance C0 and losses represented by the resistors Rse and Rsh. Here,
the impact of C0 and hence, the electric plasma frequency, is not neglected.

Figure5.15 demonstrates how a resistive biasing network can be incorporated in
the unit cell. For a small varactor leakage current, the voltage drop over the resistive
biasing network can be neglected and the varactor voltages are

Fig. 5.14 RF equivalent
circuit of the unit cell with
tunable series and shunt
branch

Lse/2

p

C0

2Cse

Csh

Lsh

Lse/22Cse

Rsh

Rse/2Rse/2

Fig. 5.15 Schematic of two
unit cells marked by the gray
shading and the additional
bias network with the
resulting DC tuning voltages

VDC1VDC2

Vse Vse Vse Vse

Vsh Vsh

p
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Vse = VDC1 − VDC2, (5.14)

Vsh = −VDC1. (5.15)

As for the prototype with semiconductor varactors, only two tuning voltages are
necessary to independently tune the capacitors in the series- and shunt branch.

If the unit cell length p is small compared to the wavelength, i.e. if the spatial
dispersion is negligible, the unit cell shows a Drude dispersion for the effective
permeability and Lorentz dispersion for the effective permittivity so that (2.18) and
(2.23) become

μeff = Lse

p

(

1 − ω2
pμ + j Rse/Lse

ω2

)

, (5.16)

εeff = C0

p

(
1 + ω2

tε − ω2
0e

ω2 − ω2
0ε − jωRsh/Lsh

)
. (5.17)

With the varactors Cse and Csh, the magnetic plasma and electric transition frequen-
cies are

ω2
pμ(Vse) = 1

LseCse(Vse)
, (5.18)

ω2
tε(Vsh) = 1

LshCsh(Vsh)
+ 1

LshC0
(5.19)

and the electric resonance frequency is

ω2
0ε(Vsh) = 1

LshCsh(Vsh)
, (5.20)

which can be shifted by the DC voltages Vse in the series branch and Vsh in the
shunt branch. Hence, at a fixed frequency the effective permeability and permittivity
can be tuned independently. For ωpμ > ωtε, the dispersion can be divided into four
different frequency bands: a forward wave transmission band with a positive phase
shift above the magnetic plasma frequency and the electric transition frequency,
a backward wave transmission band between the electric resonance and transition
frequency and two stop bands, the first one below the electric resonance frequency
and a second one between the electric transition frequency and the magnetic plasma
frequency.

The unit cell in Fig. 5.16 is implemented as a loaded coplanar waveguide section
consisting of two metallic layers separated by a layer of LC. By applying a variable
static or low frequency electric field between the two metallic layers, the orienta-
tion of the LC molecules can be changed continuously yielding the voltage tunable
capacitors Cse and Csh between the metal layers.

The fabrication process follows the steps in Appendix A.3 and is based on [35].
A schematic view of the loaded CPW unit cell and a photo of the manufactured

http://dx.doi.org/10.1007/978-3-319-28179-7_2
http://dx.doi.org/10.1007/978-3-319-28179-7_2
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Fig. 5.16 a Cross section
view of the substrate and
metal layers, b layout of the
unit cell with top- and bottom
RF metallization, c photo of
the manufactured prototype

BF33 (top)

RF bottom (Au)

RF top (Au)
LC

DC top (NiCr)

DC bottom (NiCr)

BF33 (bottom)

(a)

(b)

(c)

P1

P2

prototype consisting of three unit cells are shown inFig. 5.16.TheRF signal alternates
between the bottom-gold and top-goldmetallization, each having a thickness of 2µm.
This results in the series resonator consisting of Cse and Lse. The resonator in the
shunt branch is formed by the shunt wire and the metal patch, which yields the shunt
capacitor Csh. For the top and bottom substrates, 700µm thick glass substrate Schott
BF33 (εr = 4.65, tan δ = 0.006) is used. They are separated by micropearls from
Sekisui Chemical with a diameter of 100µm, which define the height of the LC
cavity between the top and bottom metallization. A high resistive nickel-chromium
(NiCr) layer with a conductivity of 5 × 105 S/m and a thickness of 20nm is used as
an adhesive layer between the gold metallization and glass substrate. Additionally,
this NiCr layer is used to pattern the bias lines with a width of 20µm yielding a per
unit length resistance of R′

bias = 5M�/m. A thin layer of rubbed polyimide on the
glass substrates orients the LC molecules parallel to the propagation direction when
no bias field is applied. Due to its small thickness of a few nm this polyimide layer
does not influence the RF response of the unit cell.

In simulations carried out in Agilent ADS, both plasma frequencies are not tuned
independent of each other since the anisotropy and local tuning of the LC layer cannot
be modeled. Instead, an isotropic and homogenous dielectric layer with a varying
permittivity is assumed for the LC layer (Fig. 5.17).

The simulated real part of the effective material parameters without bias lines
is shown in Fig. 5.18 for the biased and unbiased state, i.e. for an LC permittivity
of εr,LC‖ = 3.16 and εr,LC⊥ = 2.47, respectively. The magnetic plasma frequency
is shifted from 27 to 31GHz if the orientation of the LC is changed. The electric

Fig. 5.17 Top view of the
top and bottom gold
metallizations and
dimensions

wa

wb
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lb
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wd

lc

p

wa = 62μm
wb = 62μm
wc = 16μm
wd = 0.625mm
la = 1.734mm
lb = 0.438mm
lc = 0.575mm
p = 2.125mm
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Fig. 5.18 Simulated real part of effective material parameters of the tunable transmission line for
two LC orientations

Fig. 5.19 On-wafer
measurement setup for the
tunable transmission line.
One tuning voltage is applied
via bias-tees and the RF
probes, the second via a DC
probe on a contact pad of the
substrate

transition frequency shifts from 27.8 to 30.4GHz. According to (5.19), the expected
tuning range of the effective permittivity is smaller than for the permeability due
to the additional non-tunable term introduced by the host medium capacitor in the
shunt branch (Fig. 5.15).

Measurements of the scattering parameters with an on-wafer setup as depicted in
Fig. 5.19 are carried out for magnetic and electric alignment of the LC molecules. In
the case of magnetic alignment, all molecules in the LC layer are oriented parallel
(unbiased) or perpendicular (biased) to the metallization and substrate surface. The
latter is done by placing rare earth magnets with a field strength of 1.3T directly
below the bottom glass substrate. Furthermore, no resistive bias lines are present
in the magnetically tunable prototype. The extracted effective material parameters
are presented in Fig. 5.20. The magnetic plasma frequency is shifted from 35.7 to
34.5GHz and the electric transition frequency from 35.4 to 34GHz when the sta-
tic magnetic field is applied in vertical direction. Due to manufacturing tolerances,
the response of the effective permeability and permittivity are shifted to higher fre-
quencies. The tuning range is smaller than predicted by simulations since, due to
the anchoring force, the LC near the substrate surface cannot be aligned perfectly
perpendicular to the alignment layer.

In addition to magnetic alignment, electric tuning and the impact of the manu-
factured resistive biasing lines is investigated. While keeping one voltage constant
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Fig. 5.20 Measured real part of effective material parameters for magnetic biasing for two different
orientation of the magnetic flux
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Fig. 5.21 Measured real part of effectivematerial parameters for tuned shunt capacitor with varying
Vsh and constant Vse = 10V
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Fig. 5.22 Measured real part of effectivematerial parameters for tuned series capacitorwith varying
Vse and constant Vsh = 10V

and varying the other voltage, only the effective permeability or permittivity is tuned
which is confirmed by the measurement results in Figs. 5.21 and 5.22. The resistive
bias network shifts the response by −2GHz compared to the magnetic alignment
without any bias lines.

The measurement results in Fig. 5.21 are obtained for a constant voltage Vse =
10V in the series branch and a varying voltage Vsh between 0 and 20V in the shunt
branch. As expected, the magnetic plasma frequency is not tuned and is constant
around 32GHz.With an increasing voltage Vsh the electric transition frequency shifts
from 32.7 to 31.5GHz.

For the results in Fig. 5.22, the voltage in the shunt branch is kept constant at
Vsh = 10V while the voltage in the series branch is tuned. Now the magnetic plasma
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frequency is shifted between 32.1 and 31GHz when the series branch voltage Vse

is increased. The electric transition frequency is kept constant around 32GHz. The
slight tuning of the effective permittivity occurs because a tuning voltage applied to
the CPW signal metallization not only orients the LC between the top and bottom
metallization of the glass substrates, but also between the CPW signal and ground.
Hence, C0, which determines the effective permittivity, is slightly tuned as well.

5.4 Tunable Open Split-Ring Resonator

Due to its small size, the open split-ring resonator (OSRR) [38] is an attractive
element for the design of compact planar filters and transmission line metamaterials.
The possibility of voltage tuning has been demonstrated in [39] for varactor loaded
open split-ring resonators and their complementary version.

An open split-ring resonator in the series branch of a transmission line can be
described by the equivalent circuit in Fig. 5.23. It consists of a series resonator with
Lse + L ring and Cse and the losses Rse. The effective permittivity of the host medium
is modeled by the shunt capacitor C0. The OSRR is not excited by the magnetic field
on the transmission line but by the current in the series branch. The ring forms a
series inductor L ring while the opposing areas of the rings form the capacitor Cring.

Due to the Drude dispersion of the effective permeability caused by the series
branch, and the constant effective permittivity, the propagation constant of the OSRR
transmission line is

γ p = ±√
ZseYsh = ±

√

(Lse + L ring)C0

(
ω2
pμ − ω2 + jω

Rse

Lse + L ring

)
(5.21)

and the characteristic impedance

Z = ±
√

Zse

Ysh
= ±

√
Lse + L ring

C0

√
ω2 − ω2

pμ − jωRse/(Lse + L ring)

ω2
. (5.22)

Above the magnetic plasma frequency

Fig. 5.23 Circuit of the
open split-ring resonator unit
cell with a tunable series
resonator in the series branch

Lse

C0/2 C0/2

Cring Lring Rse

p
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Fig. 5.24 Biasing schematic of a tunable OSRR array with 4 unit cells

Fig. 5.25 3D view of the
open split-ring resonator
array. Shown are the RF gold
layers and the
nickel-chromium layer for
the resistive biasing network

ωpμ = 1
√

(Lse + L ring)Cring
(5.23)

a propagation band occurs and the propagation constant γ becomes imaginary while
the characteristic impedance becomes real. With a tunable series capacitor Cse it
is possible to tune the phase and impedance at a certain frequency. Since only the
series branch is tunable, with this unit cell configuration it is not possible to tune
the electric response and thus, to independently tune the phase and impedance of the
configuration.

Figure5.24 shows an array consisting of four OSRR unit cells and a possible
implementation of the biasing network for a metallization layout as depicted in
Fig. 5.25. One voltage is applied to one of the RF ports using a bias tee while a
second voltage is applied via a DC contact pad on the substrate so that the varactor
voltage is

Vse = VDC1 − VDC2. (5.24)

The layout of the realized OSRR transmission line is shown in Fig. 5.25 with
the dielectric and metallic layers as shown in Fig. 5.26. Compared to [38], the rings
of the OSRR here are broadside coupled with an LC layer between the rings. That
increases the overlapping area between the rings and hence, the tunable capacitor
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BF33 (top) 700µm

RF bottom (Au) 2µm

RF top (Au) 2µm
LC

DC top (NiCr) 15nm

DC bottom (NiCr) 15nm

BF33 (bottom) 700µm

GND (Cu) 1mm

Fig. 5.26 Dielectric and metal layers of the open split-ring resonator structure
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Fig. 5.27 Tunable open split-ring resonator: a detail photo of the realized structure, b unit cell
geometry (dimensions: p = 1mm, ri = 300µm, w = g =10µm)

Cring. Furthermore, a ground planewindow is not implemented due to the large aspect
ratio between the ring distance of 100µmand the substrate thickness of 700µm.Like
for the fabrication of the structure in Sect. 5.3, two BF33 glass substrates are glued
on top of each other while glass spheres with a diameter of 100µm act as spacers to
form the LC cavity between the substrates. A photo of the fabricated structure can be
seen in Fig. 5.27a with four OSRR unit cells including the meander bias lines. The
dimensions of the unit cell geometry are depicted in Fig. 5.27b.

Simulations are carried out in Agilent ADS with an isotropic and homogeneous
dielectric layer representing the LC layer. Figure5.28 shows the resulting simulated
frequency response of the Bloch impedance and unit cell phase shift. It can be seen
that the magnetic plasma frequency is shifted from 13 to 12GHz if the biasing field
is applied, i.e. if the LC permittivity is tuned from εr,LC⊥ = 2.47 (unbiased) to
εr,LC‖ = 3.16 (biased). At the design frequency of 16GHz the Bloch impedance is
close to 50� for all tuning states.

The measured transmission and input reflection of an array of 10 unit cells for
different tuning voltages are shown in Fig. 5.29. The tuning of the lower cutoff
frequency between 13 and 14GHz can be clearly observed. At the design frequency
of 16GHz the unit cell transmission is better than −0.3dB/unit cell with a matching
better than −10dB.

The measured real part of the Bloch impedance for a tuning voltage of 0 and
120V is shown in Fig. 5.30. It is smaller than predicted by the simulation in the
transmission band and shifts between 25 and 40� at 16GHz.
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Fig. 5.28 Simulated real part of Bloch impedance and unit cell phase shift for the biased and
unbiased state of the OSRR unit cell
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Fig. 5.29 Measured forward transmission and input reflection of a 10 unit cell OSRR array
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Fig. 5.30 Measured real part of Bloch impedance and unit cell phase shift for the biased and
unbiased state of the OSRR array consisting of 10 unit cells

In the measured unit cell phase shift in Fig. 5.30 it can be seen that the cutoff
frequency, i.e. the magnetic plasma frequency, is shifted from 14 to 13GHz if the
tuning voltage is increased from 0 to 120V. The discrepancy between the simulation
and measurements is caused by the bias lines. Due to the critical etching time of a
few seconds of the NiCr layer, their thickness cannot be controlled precisely. That
directly affects the resistance of the resistive bias network and hence, the coupling
between the unit cells.

A variety of planar unit cell topologies and configurations exists and the suitability
of each depends on the specific application. Hence, the tunable unit cells presented
here cover a small field of possible applications.However, the concepts, demonstrated
for the double series unit cell and the open-split ring resonator, could be applied for the



92 5 Tunable Transmission Line Metamaterials

implementation of other voltage tunable configurations, especially for frequencies
above 10GHz.
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Chapter 6
Artificial Gradient-Index Lens

Metamaterials for the microwave region are of special interest in the design of
three-dimensional structures such as artificial lenses [1–4], absorbers [5], or cloak-
ing devices [6, 7], since the electric and magnetic response, i.e. effective permittivity
and permeability, can be tailored independently of each other. This can be done by
employing fundamental elements like split-ring resonators and wires to influence the
magnetic and electric field of an incident wave.

By using a combination of SRRs [8] and wires [9], a desired frequency response
can be tailored and realized with tunable properties. Depending on the frequency
range of operation and technological limitations, variations like omega resonators
[10, 11], S-shaped resonators [12, 13], or fishnet elements [14, 15] can be employed.
Like the SRR–wire combination, these particles exhibit a Lorentz–Drude or double-
Lorentz response. By introducing voltage tunable elements such as varactor diodes
or materials like liquid crystal, tunable particles can be designed. These allow recon-
figuration of phase and impedance at a fixed frequency or a tuning to cover a larger
frequency band of operation.

In this chapter, tunability is introduced to different unit cell structures such as
split-ring resonators, omega resonators, and fishnet metamaterials. To investigate the
applicability for complex three-dimensional structures, unit cells are loaded with
varactor diodes and liquid crystal material. Furthermore, by introducing a voltage
tunable gradient in a fishnet array, the beam scanning capability of a gradient-index
metamaterial with a tunable scan angle is demonstrated. Different implementations
and characterization methods, which take realizability and technological constraints
of complex arrays into account, are demonstrated by guided wave and free space
characterization methods.

6.1 Gradient-Index Structures for Beam Scanning

The working principle of a gradient-index structure consisting of N unit cells
transversal to an incident wave is shown in Fig. 6.1. The phase shift φn is linearly
increased in x-direction yielding a constant phase gradient
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Fig. 6.1 Working principle of the gradient-index lens: The phase shift φn is linearly increased over
the lens aperture yielding the radiation angle ψ . φ1 and φN represent the maximum and minimum
phase shift and w the array width [16], c© 2014 IEEE

Δφ(ω)

Δx
= φ(x0) − φ(x0 + w)

w
= φ1 − φN

w
(6.1)

where w is the width of the lens. The non-constant phase distribution over the aperture
of the lens creates a frequency dependent refraction of the incident wave with the
angle

ψ

(
ω,

Δφ

Δx

)
= sin−1

(
c0

ω
· Δφ(ω)

Δx

)
. (6.2)

With an increasing phase gradient Δφ

Δx , the beam scanning angle is increased. By
increasing the lens width w, the half-power beam width of the radiated beam can be
decreased, but at the same time this also reduces the phase gradient Δφ

Δx and thus,
the scanning angle ψ . Hence, for a specific application, a compromise has to be
found between the half-power beam width and the scanning angle if the maximum
achievable phase difference |Δφmax| = |φ1 − φN | is smaller than 2π .

For |Δφmax| ≥ 2π , the phase periodicity can be exploited by applying a Fresnel-
lens profile [17–19] over the aperture as shown in Fig. 6.2. In each zone with the
width s, the phase shift φ is increased from 0 to 2π . Due to phase wrapping, the
phase gradient that determines the radiation direction, becomes

Δφ(ω)

Δx
= φ(x0) − φ(x0 + s)

s
. (6.3)

The radiation angle ψ is not limited by the aperture size w so that a large scanning
angle together with a small half-power beam width can be realized.

This principle is demonstrated for a discretized gradient-index lens with an aper-
ture size of w = 90 mm discretized by 18 unit cells. The operation frequency is
22.5 GHz. With a maximum phase difference of |Δφmax| = 2π , the maximum phase
gradient is

∣∣Δφ

Δx

∣
∣ = 2π

85 mm , and the maximum beam scanning range is ±9◦.
A larger scanning angle with the same geometry requires a larger phase difference

or a wrapping of the phase at 2π . e.g., for a radiation angle of ψ = 32◦, a phase
difference of |Δφ| = 6.8π over the complete aperture with the width w is required
and the phase gradient becomes

∣
∣Δφ

w

∣∣ = 6.8π
85 mm = 0.08 π

mm . However, as shown in
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Fig. 6.2 Working principle
of a Fresnel lens: in each
section the phase is linearly
increased

ψ

x

z
l

s

Fig. 6.3 Required phase
distribution of a discretized
gradient-index lens with
continuous phase increment
(unwrapped) and with a
Fresnel phase profile
(wrapped) for a radiation
angle of ψ = 32◦
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Fig. 6.4 Electric field distribution of a discretized gradient-index lens: a with continuous phase
increment of Δφ = 6.8π over the aperture, b with a Fresnel phase profile

Fig. 6.3, the same radiation angle can be achieved with a phase wrapping at |Δφ| =
2π and introduction of four zones with the width s. The phase gradient is

∣∣Δφ

s

∣∣ =
2π

25 mm = 0.08 π
mm , yielding the same radiation angle of 32◦.

A comparison of the electric field distribution of the discretized gradient-index
lens in the xz-plane is shown in Fig. 6.4 for a phase difference of 6.8π over the
complete aperture (Fig. 6.4a) and for a Fresnel phase profile with a phase difference
of 2π in each zone (Fig. 6.4b). The Fresnel lens consists of four zones with a linearly
increasing phase from 0 to 2π in each zone as depicted in Fig. 6.3. Since for both
configurations the phase gradient is identical, the incident normal wave is refracted
with an angle of 32◦, which confirms the analytic value. Differences occur mainly
for the side lobes.
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Fig. 6.5 Farfield pattern of a
discretized gradient-index
lens with continuous phase
increment (unwrapped) and
with a Fresnel phase profile
(wrapped)
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Figure 6.5 shows the simulated directivity in the xz-plane for the continuous and
the Fresnel phase distribution, respectively. The main lobe direction and magnitude
are in agreement for both configurations and the main lobe directions confirms the
theoretical value of 32◦. As expected from the nearfield results, the side lobes are
increased for the Fresnel profile with phase wrapping.

Equation (6.2) illustrates that only the sign of the phase gradient Δφ

Δx and not the
sign of the phase φn itself determines the direction of the transmitted wave, i.e. the
sign of the radiation angle ψ . Hence, it is not crucial to have a negative phase, i.e. a
simultaneously negative effective permeability and permittivity, to achieve scanning
to negative angles. This is particularly important if the dispersion of the effective
permeability is taken into account: A negative effective permeability is realized with
a Lorentz dispersion near the magnetic resonance frequency. This, however, is the
region with largest magnetic losses. Since for the gradient-index lens the phase φn

does not have to be negative, it is instead possible to work in the positive permeability
region below the magnetic resonance frequency, where the effective permeability
shows a strong dispersion and hence, a high tunability, but moderate magnetic losses.

6.2 Tunable Split-Ring Resonator

For microwave frequencies it has been demonstrated that split-ring resonators can be
applied in three-dimensional devices such as gradient-index structures. In [1, 2] the
magnetic resonance frequency is varied to create a gradient of the effective perme-
ability and hence, of the phase. However, this gradient is fixed since it is created by
varying the geometry of split-ring resonators. In [20, 21] it has been demonstrated
that by loading the gap of a split-ring resonator in planar configurations with semi-
conductor varactors or ferroelectric material, the magnetic resonance frequency can
be tuned by a DC voltage. Although non-planar configurations with a tunable mag-
netic resonance frequency exist [22, 23], a realization of a three-dimensional array
of such tunable split-ring resonators is very challenging due to the complex biasing
network. Here, a biasing scheme for split-ring resonators loaded with semiconductor
varactors, which can be applied also in larger arrays, is presented and investigated.

To tune the effective permeability of an array of split-ring resonators at a fixed
frequency, it is necessary to shift their magnetic resonance frequency. This can either
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Fig. 6.6 Principle diagram
of the DC biased SRRs,
p = 9 mm, w = 0.55 mm,
d = 1.5 mm

p

d
VDC

RDC w

be achieved by tuning the ring inductance L ring or the gap capacitor Cgap, where
tuning the gap capacitor is more practical in terms of implementation. The conve-
nient position of the tunable capacitor differs depending on the shape of the split-ring
resonators. For broadside-coupled split-ring resonators (BC-SRR), the main capac-
itance is between the rings on two sides of a substrate. To tune this capacitance,
varactors have to be located between the two sides of the substrate and vias are
required to contact them to the rings. A similar problem occurs with edge-coupled
split-ring resonators (EC-SRR) where the varactor has to be placed between the inner
and outer ring or in the gap of the outer ring of the EC-SRR unit cell [24, 25]. Due
to the interleaved rings, the tuning voltage for the inner ring only can be applied
from the second substrate side which requires via connections and results in a more
complex biasing network.

Figure 6.6 shows a split-ring resonator with two gaps which are each loaded with
a semiconductor varactor. By introducing two gaps, two separate DC paths are cre-
ated and at the same time, the symmetry of the unit cell in propagation direction
is maintained and a bi-anisotropic response is prevented. A DC tuning voltage can
be applied between the upper and lower half of each split-ring resonator to tune the
varactor capacitance. To distribute the tuning voltage in an array of split-ring res-
onators, adjacent unit cells are connected by the resistors RDC. The reverse current
Ir of each varactor diode causes a voltage drop on the DC coupling resistors RDC.
Thus, the voltage drop before the nth SRR is

VR,n = 4RDC Ir (N − n + 1) (6.4)

where N is the total number of unit cells. The varactor voltage at the nth SRR inside
an array is

Vn = VDC −
n∑

k=1

VR,k = VDC − 4n

(
N + 1 − n

2

)
RDC Ir . (6.5)

To minimize the DC tuning voltage difference between adjacent unit cells it is nec-
essary to apply varactors with a small reverse current Ir . In the presented prototype,
varactor diodes BB857 by Infineon are employed with a reverse current of 25 pA.
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For an array consisting of nine unit cells and with RDC = 100 k�, the maximum
varactor voltage difference between the first and last unit cell is only 360µV.

The square shape is chosen for the rings. This allows the implementation of
the DC connection and the RF decoupling between the SRRs with SMD resistors.
Since the unit cell size is not increased by the biasing network, the biasing scheme in
Fig. 6.6 can be applied to complex three-dimensional periodic arrangements of SRRs.
Another benefit is that the already existing RF structure is used to distribute the DC
tuning voltage. Hence, no additional biasing lines are required which simplifies the
manufacturing process and reduces parasitic effects.

Measurement of the response of an implemented array of split-ring resonators
is possible with different approaches. Fabrication of an array consisting of a large
number of unit cells in propagation direction as well as transversal to the propagation
direction [26] is challenging since a large number of substrates have to be aligned
in parallel to each other. Furthermore, a large number of SMD varactors and biasing
elements are required. In contrast, measurement of a single unit cell element [25]
does not take the effects of the biasing network and higher order mode coupling into
account. As a compromise, a rectangular hollow waveguide described in [27–29],
which has well defined boundary conditions for measurements, is used here. Hence,
only a single unit cell transversal to the propagation direction is required while in
propagation direction a high number of unit cells can be implemented to consider
higher order mode coupling between adjacent unit cells.

If the split-ring resonators are positioned as shown in Fig. 6.7 in the transversal
center of the waveguide, they are only excited by normal magnetic field components
as in the case of a plane wave excitation. However, the waveguide itself shows a
dispersive characteristic. This has to be taken into account but is not critical for the
present investigation since the waveguide yields a Drude dispersion for the effective
permittivity if the propagating mode is a TE mode (3.38). Since the split-ring res-
onators and their effective permeability do not affect the dispersion of the effective
permittivity created by the waveguide and vice versa, they can be investigated sep-
arately. Beyond the characterization purpose, the principle of a hollow waveguide
loaded with voltage tunable split-ring resonators has been demonstrated for the appli-
cation in voltage tunable leaky-wave antennas [30, 31].

Fig. 6.7 CST model detail
of the coax to waveguide
transition and tunable SRR
array inside the waveguide
test fixture. The DC bias
resistors are positioned over
the horizontal gaps between
adjacent SRRs, the varactor
diodes over the vertical SRR
gaps

RDC coax–waveguide transition

SRRvaractor

http://dx.doi.org/10.1007/978-3-319-28179-7_3
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The fabricated array consists of 9 unit cells in propagation direction with the
dimensions as shown in Fig. 6.6. These dimensions allow measurements inside
a WR90 waveguide with a TE10 cutoff frequency of 6.56 GHz. Below this, the
waveguide shows a negative effective permittivity due to the Drude dispersion (3.38).
As substrate, Rogers RO5880 with a thickness of 0.38 mm is used.

Simulations of the unit cell as well as the array, both inside the WR90 waveguide,
are carried out in two steps. In the fullwave simulation using the frequency domain
solver in CST Microwave Studio, each lumped element, i.e. varactor diodes and
resistors, is replaced by a discrete port. In a second simulation step, these discrete
ports are loaded with scattering parameters representing the discrete SMD elements.
This is possible since the unit cells as well as the lumped elements are linear and
reciprocal. That way, the time consuming fullwave simulation has to be performed
only once while the final response of the unit cell and the array for different tuning
states or different capacitive and resistive loads can be carried out with a fast circuit
simulation based on scattering parameters. Another benefit is that for the lumped
elements measured scattering parameters from precise element characterizations can
be included in the simulation.

The obtained real parts of the effective material parameters of a single SRR unit
cell without the biasing resistors inside a WR90 waveguide are shown in Fig. 6.8 for
different tuning voltages in 4 V steps. The effective permittivity is negative over a
broad frequency band following the Drude dispersion (caused by the excitation of
TE10 mode of the waveguide) while the effective permeability is negative between the
magnetic resonance and transition frequency. By tuning the varactor voltage from 4 to
24 V, the magnetic resonance frequency is shifted between 0.75 and 1.7 GHz. Besides
the anti-resonace caused by spatial dispersion due to the large phase, the effective
permittivity is unaffected by the tuning since it is only determined by the waveguide
geometry. Since both, μ′

eff and ε′
eff are simultaneously negative, a backward wave

transmission band occurs above the magnetic resonance frequency and below the
waveguide cutoff frequency [32–34].

With the varactor capacitance, which is tuned between 0.8 pF and 4 pF, and the
magnetic resonance frequency
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Fig. 6.8 Simulated effective material parameters of the voltage tunable SRR in a WR90 hollow
waveguide (intermediate tuning states in 4 V steps are plotted in gray)

http://dx.doi.org/10.1007/978-3-319-28179-7_3
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Fig. 6.9 Surface current
density of the SRR unit cell
inside the waveguide

RDC

SRR

varactor

Fig. 6.10 Simulated impact
of the biasing elements for
an array of 9 unit cells and a
varactor voltage of 20 V
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, (6.6)

the ring inductance yields L ring = 22.5 nH.
The major part of losses in the magnetic response is due to metallic losses of the

SRR. As it can be seen in Fig. 6.9, the current density is very high in the SRR corners.
Furthermore, no current flows via the connection pads for the bias resistors in each
corner, which means that the impact of the bias network connected to these points
will be comparatively small.

To determine the impact of the resistive biasing network on the response of the
SRR array inside the waveguide, a simulation of the lossless array consisting of 9 unit
cells is carried out with and without biasing elements. As it can be seen in the detailed
view of the backward wave transmission band in Fig. 6.10, the biasing network only
has a minor effect on the frequency characteristic. The varactor capacitance is set
to 3 pF while the biasing resistors are modeled as a resistance of 100 k� with a
parasitic parallel capacitance of 0.5 pF. Due to increased coupling between adjacent
SRRs caused by the biasing elements, the backward wave transmission band gets
slightly narrower while its position is not changed.

The simulation of a single unit cell as does not consider higher order mode
coupling between adjacent unit cells. However, higher order modes can strongly
contribute to the propagation in the macroscopic structure, i.e. effective material
parameters obtained with a fundamental mode excitation are not always sufficient
to describe the response of the macroscopic structure. Therefore, a simulation of the
complete characterization setup is carried out following the approach in Sect. 4.1.2.

http://dx.doi.org/10.1007/978-3-319-28179-7_4
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Fig. 6.11 Simulated transmission and input reflection of the complete SRR loaded waveguide for
different biasing voltages (intermediate tuning states in 4 V steps are plotted in gray)

Since the coax–waveguide transitions are included in this simulation, the definition
of effective material parameters loses its meaning if they are extracted from the
complete structure. Yet, obtained scattering parameters yield information about the
position of the backward wave band and its tuning.

The simulated scattering parameters of the complete characterization setup are
shown in Fig. 6.11 for different tuning voltages. For the lumped elements, i.e. the bias
resistors and the varactor diodes, measured scattering parameters are used in combi-
nation with the fullwave simulation of the loaded waveguide. The center frequency
of the backward wave transmission band below the waveguide cutoff frequency of
6.56 GHz can be tuned between 1 and 2.2 GHz. The shift of the backward wave
band to a slightly higher frequency compared to the transmission band predicted by
the effective material parameters is caused by the higher order mode coupling. The
degraded matching for lower frequencies is due to the waveguide dispersion. Since
the waveguide is not affected by the tuning, the effective permittivity changes for
each tuned transmission band as shown in Fig. 6.8. Hence, the Bloch impedance in
the transmission band changes with the tuning voltage.

Figure 6.12 shows a photo of the opened WR90 waveguide used for the mea-
surements and the array of 9 split-ring resonators. Above and below the SRRs a
metallization strip is visible. This metallization is connected to the waveguide and
sticks out by 0.1 mm into the waveguide to form a defined and constant distance
between the SRR and RF ground potential.

A comparison of the simulated and measured scattering parameters of the back-
ward wave band are shown in Fig. 6.13 for a varactor voltage of 20 V. The frequency
of the backward wave band is predicted well by the simulation, while the measured
bandwidth is smaller. This is caused by a variation of the varactor capacitiances and
stronger coupling via the biasing resistors between adjacent unit cells due to the
soldering and manufacturing process.
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Fig. 6.12 Photo of the SRR loaded waveguide with 9 tunable unit cells
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Fig. 6.13 Comparison of simulated and measured transmission and input reflection for a tuning
voltage of 20 V
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Fig. 6.14 Measured transmission and input reflection for different biasing voltages (intermediate
tuning states in 4 V steps are plotted in gray)

The measured transmission and input reflection for different tuning voltages in 4 V
steps are shown in Fig. 6.14. The backward wave transmission band is shifted from
0.9 to 2.2 GHz for a voltage between 4 and 24 V which agrees with the theoretical
frequency tuning range. As expected from simulations, for low frequency transmis-
sion bands matching is degraded due to the larger negative effective permittivity. For
transmission bands above 2 GHz, the transmission is better than −1 dB/unit cell.
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6.3 Tunable Omega Resonator

It has been demonstrated that varactor loaded split-ring resonators can be used to
realize a tunable magnetic response in the microwave region. In addition, a wire
array can be employed to manipulate the electric response. However, in an array
with tunable properties, the separation of the split-ring resonators and wires yields
a complex biasing network. A unit cell configuration that combines the magnetic
response of the split-ring resonator and the electric response of the wire is the omega
resonator [10, 35] that has originally been presented as chiral particle with strong
bi-anisotropy. In a broadside-coupled configuration [11, 36–39] as shown in Fig. 6.15,
the bi-anisotropic effect is canceled out yielding the typical effective material para-
meters in Fig. 6.16. The effective permeability shows a resonance at 6.3 GHz and
a transistion frequency of 8.4 GHz with a negative effective permeability between
them. This Lorentz dispersion is caused by the rings [39]. The effective permittivity
shows a Drude dispersion with an electric plasma frequency of 8.9 GHz caused by
the wires parallel to the incident electric field.

Close to the magnetic resonance frequency, the effective permeability becomes
very large yielding a large unit cell phase shift φ ≈ π and hence, a strong spatial
dispersion as described in Sect. 2.4. This becomes obvious with the anti-resonance
of the effective permittivity at the magnetic resonance frequency.

The magnetic response is determined by the rings which are excited by the per-
pendicular magnetic component of the incident wave. Hence, the resonance and
transition frequency are the same as for the split-ring resonator (3.14) and (3.15). On
the other hand, the electric response is determined by the arms of the omega resonator
which are parallel to the incident electric field yielding a Drude response with the
electric plasma frequency (3.4). It can be seen that the gap capacitance has an impact
only on the magnetic response. Thus, when a tunable capacitor is introduced, only
the magnetic response is tuned while the electric plasma frequency is constant.

Figure 6.15 illustrates that the vertical arms of the omega resonator are connected
to the upper and lower unit cells, i.e. all unit cells consist of a metallization that is
continuous in vertical direction. This continuous RF metallization can be used at the
same time to distribute a DC tuning voltage inside an array.

Fig. 6.15 Broadside-
coupled omega resonator
unit cell
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k
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Fig. 6.16 Real part of the
effective material parameters
of the omega resonator
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Fig. 6.17 Biasing scheme of
an array of varactor loaded
omega resonators

E

VDC GND

H
k

A tuning of the magnetic resonance is possible by loading the gaps of overlapping
rings with a tunable component. In [40] liquid crystal is used as magnetically tunable
material between the broadside-coupled rings. Here, by loading the gaps of the omega
resonator with varactor diodes, the magnetic resonance frequency is tuned while the
electric response is unaltered. The layout of the unit cell with biasing elements is
depicted in Fig. 6.17. Each gap is loaded with two varactor diodes whose common
node is connected to the adjacent unit cell via a resistor. Since a vertical array of omega
resonators consists of one continuous metallization, this metallization can be used
to provide each unit cell with the required DC tuning voltage. In the implementation
of an array, special care has to be taken of the first and last unit cell in vertical
direction. To maintain the electric boundary condition, which mimics an infinite
array in vertical direction, and to avoid additional electric resonances, the arms of
the omega resonator have to be connected to a metallic plane. At the same time,
DC blocking capacitors have to be introduced to prevent a DC short circuit over the
metallic plane between VDC and ground potential.

Characterization Line

When characterizing three-dimensional metamaterials such as split-ring resonators,
wires, or omega resonators on substrates which are positioned parallel to the propa-
gation direction of the incident wave, a major challenge is the mechanical positioning
and fixing of substrates since they have to be aligned parallel with constant distance
to each other. Additionally, for structures like wires or omega resonators, a good
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Fig. 6.18 a Photo of the complete characterization line, b Photo of the characterization line loaded
with omega resonators and without the microstrip signal metallization
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Fig. 6.19 Characterization line: a Cross section view transversal to the propagation direction z,
b Top view of the middle section consisting of layered metal sheets with cutouts for the substrates

RF ground connection of the structures is required to avoid additional resonances
in the electric response. A characterization of such structures can be done e.g. with
three-dimensional arrays containing a large number of unit cells transversal to the
propagation direction. Another solution is to use guided wave structures such as
microstrip lines with a field distribution similar to a plane wave in free space, which
can then be loaded with the unit cells to be characterized [23]. That way the number
of required unit cells is much smaller than for a free space characterization which is
convenient especially for tunable unit cells.

On the basis of these considerations and the required ground connection of the
arms of the omega particle, the characterization line in Fig. 6.18 based on a microstrip
line has been designed. It consists of a substrate fixing section holding the substrates
in the middle of the setup, and taper sections at the input and output port. To provide
a good RF ground connection and to hold the substrates, signal and ground line
are cut in propagation direction z into 5 layers with vertical cutouts. Substrates
are positioned in these cutouts and clamped between the metal sheets as shown in
Figs. 6.18b and 6.19.

The microstrip characterization line is a compromise in terms of field distribu-
tion and the required number of unit cells. The simulation results of the electric and
magnetic field distribution of the unloaded characterization line in Fig. 6.20 show
that fields in the parallel section between the signal and ground metallization mainly
consist of vertical electric field components and horizontal magnetic field compo-
nents, both close to the field distribution of a plane wave. This is the region where
the unit cells to be characterized are positioned. Fringing fields occur close to the
corner of the signal line and outside the parallel section.
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(b)(a)

Fig. 6.20 Simulated field distribution of the unloaded characterization line: a electric field distri-
bution, b magnetic field distribution

Fig. 6.21 Measured real
part of line impedance of the
empty test fixture
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The characterization line and its taper sections are designed for an impedance
of 50 � for a minimum reflection and a simple de-embedding. Thus, after measure-
ments, the taper sections including the coax transitions are de-embedded by assuming
a constant line impedance and linearly increasing phase constant of the taper sec-
tions. For the unloaded test fixture in Fig. 6.18a, the measured line impedance of
the middle section, which will hold the structure to be characterized, is shown in
Fig. 6.21. The real part is close to the desired value of 50 �. The extracted material
parameters in Fig. 6.22 show a relative permeability and permittivity around their
ideal values of unity. The ripple is caused by imperfections of the produced taper
sections and the transition between the SMA connectors and the taper section, which
is sensitive to changes. With a calibration, e.g. a through-reflect-line (TRL) calibra-
tion with different standards for the middle section, the error terms that represent
the taper sections could be calculated, so that in measurement, the precise scattering
parameters of only the middle section are obtained.
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Fig. 6.23 a 3D view of the omega resonator unit cell. b Layout of the omega resonator unit cell
(dimensions in mm: p = 7, h = 6, ri = 2, g = 0.4, v = 0.5, w = 0.4). c Photo of the fabricated
4 × 1 × 3 array

Characterization of Tunable Omega Resonators

To demonstrate the tunability of the omega resonators, the varactor loaded unit cell
shown in Fig. 6.23 is designed. It consists of two broadside-coupled omega resonators
to maintain the symmetry of the unit cell and hence, to prevent a bi-anisotropic
response. Due to loading of the gaps with varactor diodes, the main capacitance is
determined by the varactors while the capacitance between the broadside-coupled
rings can be neglected. Each gap is loaded with two varactor diodes, whose common
node is connected to the adjacent unit cell via a resistor as shown in Fig. 6.24. By
loading the gaps of the omega resonators with varactor diodes, the magnetic reso-
nance frequency (3.14) can be tuned by a DC voltage while the electric response is
not changed. The capacitors in the arms of the omega resonators prevent a DC short
circuit of the DC biasing voltage on the signal metallization of the characterization
line.

For the varactor diodes, the Skyworks SMV1232 with a capacitance of 1 pF to
7 pF for a DC voltage between 0 and 15 V at 2 GHz is used. With the dimensions in
Fig. 6.23, a backward wave transmission band in the range of 1.8 GHz is obtained.
The metallizations above and below the omega particles have a width of 10 mm to
assure a good RF contact between the arms of the omega resonators and the test
fixture clamping areas.

With the given unit cell size, a 4 × 1 × 3 unit cell array can be characterized in
the presented characterization line. The unit cell and its biasing in Fig. 6.24 follow
the proposal for the biasing of larger omega resonator arrays in Fig. 6.17.

For the simulation of the omega particle, the frequency domain solver in CST
Microwave Studio and CST Design Studio for circuit simulation are used. As for
the tunable SRR in Sect. 6.2, a fullwave simulation of the unit cell structure with
a discrete port for each lumped element, i.e. varactor diode, bias resistor, and DC
blocking capacitor, is carried out. In a second simulation step, these ports are loaded
with measured scattering parameters of the elements in a circuit simulator. Thus,
the time consuming fullwave simulation has to be performed only once when the
geometry is changed, while the tuning behaviour can be investigated on circuit level.

http://dx.doi.org/10.1007/978-3-319-28179-7_3
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Fig. 6.24 a Photo of a fabricated omega resonator unit cell, b Biasing scheme of the omega
resonators inside the characterization line
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Fig. 6.25 Comparison of the simulated and measured effective material parameters of the 4 × 1 × 3
array for a tuning voltage of 5 V

A comparison between the simulated and measured effective material parameters
is shown in Fig. 6.25 for a tuning voltage of 5 V. The effective permeability is pre-
dicted well while the effective permittivity shows a significant discrepancy between
the simulated and measured results. The main origin of this is the overlapping area
between the RF ground on the substrates and the metallization of the characterization
line. If both surfaces are not touching completely, gaps between them cause parasitic
capacitances, which have a significant impact on the capacitance in the shunt branch
of the equivalent circuit. A further source of error is the de-embedding process of
the taper sections of the characterization line as described before. Since the charac-
teristics of the manufactured taper sections are not exactly known, the caused error
affects the extracted effective material parameters.
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Fig. 6.26 Measured real part of effective material parameters of the 4 × 1 × 3 array for different
tuning voltages (intermediate tuning states in 1 V steps are plotted in gray)

The continuous tuning of the real part of the effective material parameters is
demonstrated in Fig. 6.26. Due to the imperfect contact of the RF ground metalliza-
tion, a parasitic resonance occurs in the effective permittivity which overlaps with
the magnetic resonance so that a backward wave band cannot be observed. However,
the effective permeability follows the Lorentz dispersion and the magnetic resonance
frequency can be tuned between 1.1 GHz at 0 V and 1.9 GHz at 7 V as expected from
the theoretical considerations.

6.4 Tunable Fishnet Structure

In the previous sections it has been demonstrated and investigated how tunability can
be introduced to three-dimensional unit cells like split-ring resonators and omega
resonators using biasing schemes that are suitable for the implementation of large
arrays. However, the substrates containing the unit cells have to be aligned parallel
to each other with a constant distance. This can be challenging for certain substrate
materials such as Teflon-based laminates where the distance can vary due to the
missing rigidity of the substrates, particularly since a large number of substrates is
necessary transversal to the propagation direction. Apart from mechanical demands,
investigations of split-ring resonators have shown a degradation and saturation of
their resonance when scaled up in frequency [41].

For the fishnet structure [14, 15, 42], which shows the same dispersion characteris-
tics as the SRR–wire combination, manufacturing challenges are less restrictive since
required metallizations can be structured using standard photolithography on Teflon
or glass substrates, which are then stacked normal to the incident beam. Tunability
of the dispersion characteristics can be achieved by using a dielectric layer with a
tunable permittivity between the RF metallizations of the fishnet. In [43, 44], LC is
used as voltage tunable dielectric layer with a permittivity that is tuned uniformly
over the complete array. Hereby, the uniform phase distribution over the aperture of
the fishnet and its frequency response can be controlled, but beam scanning is not
possible.



112 6 Artificial Gradient-Index Lens

Fig. 6.27 Schematic view of
two unit cell layer of the
fishnet array
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Fig. 6.28 Real part of the
effective material parameters
of a fishnet array
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Here, an artificial gradient-index lens based on fishnet metamaterial with a locally
tunable response is demonstrated. In addition to the frequency-selective response,
it is possible to manipulate the phase distribution over the aperture with a tuning
voltage and achieve a scanning of an incident wave.

The fishnet with the schematic view of two unit cell layers in Fig. 6.27 produces
a Lorentz-Drude response for the effective material parameters [14, 15] as shown in
Fig. 6.28. The effective permeability shows a Lorentz resonance at 23.1 GHz with
strong spatial dispersion whereas the effective permittivity follows the Drude dis-
persion with a wide band of negative effective permittivity below the electric plasma
frequency of 22.1 GHz. Figure 6.29 shows the surface current densities near the mag-
netic resonance frequency and near the electric plasma frequency, respectively. Near
the magnetic resonance, the incident magnetic field induces antiparallel currents
on the metallizations (Fig. 6.29a). The current loop is closed via the dielectric layer
between the metallizations yielding the equivalent circuit in Fig. 6.30b. The magnetic
resonance frequency is thus given by [14]

ω2
0μ = 1

C1
·
(

1

L1
+ 1

L2

)
(6.7)

and can be tuned by the capacitance C1, i.e. the permittivity, between the metalliza-
tions.
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Fig. 6.29 Surface current density of the fishnet unit cell: a near the magnetic resonance frequency,
b near the electric plasma frequency
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Fig. 6.30 Fishnet unit cell: a Three-dimensional view; b/c: Lumped element representation of the
currents in the fishnet unit cell: b Excitation of antiparallel currents near the magnetic resonance
frequency, c Excitation of parallel currents near the electric plasma frequency

Near the electric plasma frequency, the currents on the metallizations driven by the
incident electric field are parallel (Fig. 6.29b). Since the distance between the met-
allizations is small and hence, the phase on both metallizations is approximately the
same, no displacement current flows via the capacitance C1 which yields the equiva-
lent circuit in Fig. 6.30c. The capacitors C0 and C2 represent the capacitances inside
the unit cell parallel to the incident electric field, i.e. the dielectric host material. Two
different capacitances are used to consider different materials between the metalliza-
tions inside the unit cell and between adjacent unit cells. With this configuration, the
electric plasma frequency is

ω2
pε = 1

(L1 + L2/2)(C0 + 2C2)
. (6.8)

As it can be seen from (6.7) and (6.8), the magnetic and electric response can be
controlled by tuning the permittivity of the host material, i.e. the dielectric layers
in the fishnet. In the implemented structure, one dielectric layer consists of tunable
material whereas the other dielectric layer acts, additionally to its RF characteristic,
as mechanical supporting structure containing the RF metallizations.
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The magnetic resonance frequency is determined by the permittivity εd between
the metallizations, i.e. by the capacitor C1. To obtain a large capacitor value and thus, a
small resonance frequency and a small physical length of the unit cell, the permittivity
εd has to be as large as possible while the distance between the metallizations has
to be as small as possible. If the metallization distance is much smaller than the unit
cell length, C0 is decreased and C2 is increased so that the electric plasma frequency
can be approximated

ω2
pε ≈ 1

(2L1 + L2)C2
. (6.9)

Hence, for a small ratio of the dielectric layer length and unit cell length ld
p � 1, a

permittivity variation of the dielectric layer tunes the magnetic resonance frequency
ω0μ but not the electric plasma frequency ωpε.

6.4.1 Static Gradient-Index Fishnet Structure

With tunable effective material parameters it is possible to manipulate the phase of
the transmitted wave of a unit cell at a fixed frequency. As shown in (6.2), the direction
of the transmitted wave of an transversal array can be controlled by varying the phase
shift in each unit cell, i.e. by controlling the magnetic resonance frequency or electric
plasma frequency of each fishnet unit cell. Here, this principle is applied to realize
a continuous voltage tunable gradient-index lens based on the fishnet metamaterial.
First, investigations of the array and the phase gradient are carried out to demonstrate
the beam-scanning capability of the fishnet metamaterial and its applicability as
artificial gradient-index lens. In a second step, voltage tunability is introduced to
each unit cell of a fishnet array to control the radiation direction of the transmitted
wave.

According to Fig. 6.30 and (6.7), the magnetic resonance frequency of the fishnet
depends on the permittivity εd of the dielectric layer between the metallizations. If
their distance is much smaller than the unit cell length, a variation of the permittivity
εd tunes the capacitor C1 whereas the tuning of C0 can be neglected compared to C2.

The spatial variation of εd will later be realized by using tunable material. In the
current investigation it is realized with a layer of Rogers RO4003 dielectric substrate
with a cavity as shown in Fig. 6.31. The effective permittivity εd and hence, the
capacitor C1 ∝ εd , can be manipulated by the air–RO4003 ratio between the metal-
lizations, i.e. the cavity diameter d . With the geometric parameters in Fig. 6.31, the
effective material parameters as shown in Fig. 6.32 are achieved. With an increasing
cavity diameter d, the value of C1 is decreased which shifts the magnetic resonance
frequency from 22.5 to 25.5 GHz. Apart from the anti-resonance caused by spatial
dispersion, the effective permittivity, i.e. the electric plasma frequency of 21.8 GHz,
is not tuned.

The largest tuning of the effective permeability occurs at 22.5 GHz, i.e. the lowest
achievable magnetic resonance frequency. The effective material parameters at this
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Fig. 6.31 Schematic of the fishnet unit cell: a Front view of the metallization, b side view of the sub-
strates with the metallization and cavity for tuning the magnetic resonance frequency (dimensions
in mm : wa = 0.4, wb = 4.5, wc = 5.0, ha = 4.0, hb = 4.5, la = 0.5, p = 0.754)
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Fig. 6.32 Simulated effective material parameters for different cavity diameters

frequency for different cavity diameters are summarized in Fig. 6.33. The real part of
the effective permeability is tuned between 1.5μ0 and 15.3μ0 whereas the effective
permittivity is hardly tuned and constant around 2.5ε0. A third-order polynomial
fitting for the effective material parameters yields

⎛

⎜⎜
⎝

μ′
eff/μ0

μ′′
eff/μ0

ε′
eff/ε0

ε′′
eff/ε0

⎞

⎟⎟
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⎛

⎜⎜
⎝
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Fig. 6.33 Simulated
effective material parameters
at 22.5 GHz for different
cavity diameters
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With this, the cavity diameter can be calculated for a desired set of effective material
parameters.

With a single unit cell layer, a variation of the cavity diameter yields the scattering
parameters and phase shift φ at 22.5 GHz as shown in Fig. 6.34. Best matching and
transmission is achieved for a cavity diameter of 3 mm. This is because for d = 3 mm
the Bloch impedance

Z B =
√

μeff

εeff
≈

√
μ0

ε0
= η0 (6.11)

matches the free space impedance. Matching degrades for cavity diameters below
2 mm since only the effective permeability is tuned strongly and hence, matching
to free space cannot be maintained for all tuning states. The phase shift follows the
fitting function

φ/π = 0.080477 + 0.84127e−0.4467 d
mm (6.12)

with a maximum differential unit cell phase shift of Δφ = 0.4π . Hence, at least five
unit cell layers in propagation direction would be necessary to obtain a differential
phase shift of 2π which is essential for the implementation of a Fresnel profile.

Since during the application as tunable lens the incident or radiated wave are not
always normally oriented, it is important to consider the anisotropy of the fishnet
unit cell [45–48]. Figure 6.35 shows the two-dimensional lattice of the fishnet in the
xz-plane. Due to the structure orientation in x-direction, the wavenumbers kx and kz

are not equal and the phase shift experienced by the wave propagating in the lattice
depends on the propagation angle θ .

By applying a periodic boundary condition with independently variable phase
shifts in x- and z-direction, i.e. for varying wavenumbers kx and kz , and vertical
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diameters (TE case)

polarization, the eigenfrequencies for all possible propagation directions, i.e. the two-
dimensional dispersion diagram, can be computed using a fullwave eigenmode solver.
This dispersion diagram represents the eigenfrequencies of propagating eigenmodes
depending on the propagation directions θ .

The iso-frequency plots for a cavity diameter of 1 mm and 4 mm are presented in
Fig. 6.36. Additionally, for propagation parallel to the x- and z-axis, the dispersion
diagrams for kx (ω)|kz=0 and kz(ω)|kx =0 are shown in Fig. 6.37.

For a cavity diameter of 1 mm, the non-circular iso-frequency lines in Fig. 6.36
indicate an anisotropic response. Depending on the wavenumbers kx and kz , different
cutoff frequencies are obtained. For transmission in z-direction (kx = 0), a transmis-
sion band (limited by kz p = 0 and kz p = π ) between 19.3 and 21.9 GHz is obtained
for a cavity diameter of 1 mm (Fig. 6.37a). If the cavity diameter is increased to
4 mm, the magnetic resonance frequency is tuned and the upper cutoff frequency of
the transmission band is shifted to 22.8 GHz.
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Fig. 6.37 Dispersion diagram of the fishnet unit cell for propagation parallel to the axes: a in
z-direction (kx = 0), b in x-direction (kz = 0)

For a wave propagating in x-direction (kz = 0), the transmission band between
19.3 and 22.8 GHz cannot be tuned by the cavity diameter (Fig. 6.37b). This confirms
the theoretical considerations since in x-direction, a constant effective permeability
and Drude dispersion for the effective permittivity are expected and variation of
permittivity in the dielectric layer has a negligible impact on the electric plasma
frequency.

If kx and kz have moderate values, i.e. for small scanning angles and for regions
with small spatial dispersion, the iso-frequency lines are nearly circular with respect
to the origin. Hence, kx ≈ kz and the anisotropy can be neglected.

Although the iso-frequency plots show transmission bands and propagating eigen-
modes depending on frequency and propagation direction, they do not offer informa-
tion about the Bloch impedance. Hence, the existence of a transmission band does
not necessarily mean that the fishnet impedance matches the freespace impedance η0.
Therefore, scattering parameter simulations for different incident angles θ , i.e. for a
varying phase shift φx of the periodic boundary condition in x-direction, are carried
out. The resulting transmission |S21| in dB is shown in Fig. 6.38 for the minimum
and maximum cavity diameter. Corresponding with eigenmode results, by increasing
the cavity diameter, the transmission band is shifted to higher frequencies due to the
smaller permittivity between the RF metallization of the fishnet. Furthermore, the
transmission depends on the incident angle θ . Transmission through the array at the
operation frequency of 22.5 GHz is possible for oblique angles up to θ = 75◦ for all
tuning states. It can be observed that the transmission band, especially for a cavity
diameter of 4 mm, is wider than in the eigenmode results. This is due to the coupling
of higher order modes that are not considered in the scattering parameters of the
single-layer.

To investigate the beam scanning properties, an array consisting of 5 × 5 unit
cells transversal to the incident beam and 1 unit cell in propagation direction is
designed. The array consists of the unit cell with the dimensions in Fig. 6.31. The
cavity diameter is set to d = (4, 2.63, 1.95, 1.437, 1) mm as shown in Fig. 6.39. This
yields a phase gradient of Δφ

Δx = 15.89 π
m and, according to (6.2), a radiation angle

of ψ = 6.1◦. This is confirmed by the fullwave simulation result shown in Fig. 6.40.
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Fig. 6.38 Simulated forward transmission |S21| in dB of the fishnet unit cell for different propa-
gation angles θ in the xz-plane and for different cavity diameters (TE case)

Fig. 6.39 One line of the
static fishnet with varying
cavity diameter

Fig. 6.40 Simulated electric
near field distribution of a
single layer fishnet array
with a gradient cavity
diameter d at 22.5 GHz

The normal incident beam is refracted due to the constant phase gradient over the
array aperture.

A photo of the manufactured, opened fishnet array is shown in Fig. 6.41. Two
Rogers RO5880 substrates contain the RF copper metallization with a thickness of
17µm. The middle dielectric layer contains the cavities with varying diameter to
create the phase gradiant over the aperture width. To obtain a high accuracy of the
cavity positions and diameters, the dielectric layer is fabricated using a computer
controlled milling machine. All layers are clamped together using an FR4 frame.
The excitation is done with an open waveguide 10 cm behind the fishnet array and
the phase gradient can be changed by replacing the middle dielectric layer.
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Fig. 6.41 Photos of one opened fishnet unit cell layer consisting 5 × 5 transversal unit cells and
varying cavity diameter

Fig. 6.42 Measured
normalized far field patterns
at 22.5 GHz for positive and
negative phase gradient
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The measured far field pattern for a positive and negative phase gradient of Δφ

Δx =
±15.89 π

m is shown in Fig. 6.42. Due to the small aperture size of the array, the half-
power beam width of 30◦ is large compared to the beam scanning angle of ±3◦. The
beam scanning is smaller compared to the simulation result due to boundary effects
and variations of the gradient caused by fabrication tolerances. Because flexible
Teflon-based substrates with a small thickness are used for the outer dielectric layers
containing the RF metallizations, the distance between them shows variations over
the aperture which results in a non-constant phase gradient.

According to (6.2), to increase the beam scanning angle, the phase gradient Δφ

Δx
has to be increased by either increasing the differential phase or by decreasing the
aperture size. However, a reduced aperture size yields an even larger half-power
beam width so that the more convenient approach is to increase the differential phase
shift by increasing the number of unit cell layers in propagation direction.
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6.4.2 Voltage Tunable Gradient-Index Fishnet Structure

As demonstrated in the above section and in [49], the fishnet structure can be exploited
for the design of gradient-index metamaterials by varying the permittivity of the
dielectric layer. However, for many applications tunability of the dispersion char-
acteristics and hence, of the phase gradient, is desired, e.g. to operate at multiple
frequencies or to change the phase shift at a certain frequency. Liquid crystals (see
Sect. 5.2) with their suitable properties concerning tunability and losses for frequen-
cies above 10 GHz have been employed to design tunable devices in the terahertz
regime [50–52], e.g. by using temperature tuning of the LC permittivity.

The static gradient-index fishnet from the previous section is modified. The non-
uniform dielectric layer is replaced by a layer of liquid crystal material to implement
voltage tunability and to control the phase distribution over the aperture.

For this proof-of-concept prototype, a relatively small array with 8 × 8 transver-
sal unit cells and 2 unit cell layers in propagation direction is designed. This is a
compromise in terms of achievable beam scanning range, half-power beam width,
size limitation for fabrication, and amount of necessary LC material.

In Fig. 6.43, the proposed voltage tunable fishnet unit cell and its dimensions are
presented. The Rogers RO4003-substrate layers contain the RF metallization of the
fishnet unit cell. They are separated by a layer of LC with a voltage tunable permit-
tivity. Since all unit cells are connected in vertical direction, a tuning voltage can be
applied between two metallic layers of each column in the array. Thus, no additional
biasing network is necessary and parasitic effects are minimized. Furthermore, tech-
nological demands are drastically reduced compared to solutions with a dedicated
resistive or inductive biasing network.

To investigate the dispersion properties and their tuning, fullwave simulations of
the fishnet unit cell including all metallic and dielectric losses are carried out in CST

wa

wb

ha hb

wc

p

RO4003 LC

lLC

x
y y

z

Copper

Vn
+
–

V1 V2 V3 V4

x
y

(a) (b) (c)

Fig. 6.43 Schematic view of the fishnet unit cell. a Front view of the unit cell metallization, b side
view of two unit cell layers consisting of the substrates and liquid crystal layer (dimensions in mm:
wa = 1, wb = 4.5, wc = 4.7, ha = 3, hb = 4.5, lLC = 0.762, p = 3lLC), c front view of the array
metallization with applied tuning voltages

http://dx.doi.org/10.1007/978-3-319-28179-7_5
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Fig. 6.45 Simulated
scattering parameters and
phase shift of two unit cell
layers at 27.4 GHz for
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Microwave Studio using plane wave excitation at the input and output plane. The
extracted phase shift and real part of the Bloch impedance of two unit cell layers for
different tuning states, i.e. for different permittivities of the LC layer, are shown in
Fig. 6.44. A backward and forward wave transmission band are separated by a stop
band with tunable cutoff frequencies. This yields a maximum phase tuning close to
1π above 27.4 GHz. By stacking five unit cell layers, a differential phase shift of
more than 2π can be obtained which is necessary to achieve arbitrary phase gradients
(6.3) and a beam scanning range that is not limited by the aperture size.

The extracted phase shift and the scattering parameters of two unit cell layers are
shown in Fig. 6.45 for different LC permittivities at a frequency of 27.4 GHz. The
transmission for two unit cell layers is better than−5 dB for LC permittivities between
2.6 and 3.1 and decreases for high permittivities. Due to the dispersive response of
the unit cell, the Bloch impedance is not constant and thus, matching is not possible
for all tuning states. The mismatch, caused by the decreased Bloch impedance, can be
neglected for the presented application since it only occurs for the boundary unit cell
elements with the maximum LC permittivity. However, improvement of the matching
would be possible by optimizing the unit cell dimensions with compromises in the
phase tuning response.

With the investigated unit cell, a fishnet consisting of two unit cell layers in
propagation direction and 8 × 8 unit cells in the aperture plane is designed. Taking
the simulated phase shift of two unit cell layers and (6.2), the maximum radiation
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Fig. 6.46 Maximum
radiation angle for the
maximum phase gradient
over the array aperture
consisting of 8 transversal
unit cell elements

25 26 27 28
0

3

6

9

f /GHz

ψ
m

ax
/

de
g

Fig. 6.47 Simulated electric
near field distribution of the
two-layer fishnet array with
maximum gradient of the LC
permittivity at 27.4 GHz
[16], c© 2014 IEEE

8◦

angle for this configuration can be calculated which is shown in Fig. 6.46 over the
frequency of the incident wave. The relative permittivity of the LC layer is increased
from 2.6 to 3.2 in x-direction, yielding a positive gradient in the phase distribution at
the output plane of the fishnet array and hence, a tilt of the radiated beam. According
to (6.2), beam scanning is symmetric with the normal direction in the xz-plane.
With a decreasing LC permittivity from 3.2 to 2.6 in x-direction, the sign of the
phase gradient and hence, the sign of the maximum radiation angle, changes while
the magnitude is unaffacted. The maximum beam scanning of ±8◦ is achieved at
27.4 GHz, which is confirmed by the fullwave simulation of the array as shown in
Fig. 6.47. In the electric nearfield distribution it can be seen that the incident beam
is refracted by ψ = 8◦ with respect to the normal direction of the fishnet.

Figure 6.48 shows a photo of the fabricated substrate layers that are used to build
one unit cell layer of the fishnet. Each column of the fishnet is connected to a sep-
arate biasing pad, allowing independent tuning of each column of unit cells in the
array. Two substrates carry the RF metallizations with the fishnet structure. Another
RO4003 substrate with a thickness of 0.762 mm is used as spacer. It contains a cavity
for the LC, and filling channels for the injection of the LC in the cavity. The final
fishnet prototype consists of two of these unit cells in propagation direction. Due to
the employment of RO4003 substrates with drilled holes, bolts can be used for pre-
cise alignment of the different layers and at the same time they apply the necessary
force to seal the cavity against leakage of LC. With this approach it is easily possible
to adjust the number of unit cell layers without any adaption of the design.

A photo of the complete fishnet including the DC connector for the tuning voltages
and an open waveguide excitation is shown in Fig. 6.49.



124 6 Artificial Gradient-Index Lens

Fig. 6.48 Photo of one
opened voltage tunable
fishnet unit cell layer
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Fig. 6.49 Photo of the
finished fishnet with DC
connector for the tuning
voltages and open waveguide
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Fig. 6.50 Measured
normalized far field patterns
at 27.5 GHz for two tuning
states [16], c© 2014 IEEE
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The measured normalized far field pattern at 27.5 GHz for two tuning states
VDC = (5 V . . . 20 V) and VDC = (20 V . . . 5 V) is shown in Fig. 6.50. The maxi-
mum achieved measured scan angle of ±5◦ is smaller than predicted by the fullwave
simulation. This is due to the fact that the phase shift φn is not linearly connected to
the tuning voltage. Hence, although VDC is changed linearly, the phase distribution
over the array width is not linear. By measuring the phase shift depending on the
tuning voltage, e.g. with a near field measurement setup, the connection between φn

and the tuning voltage can be found. With that relation, a linear phase distribution
over the array aperture can be adjusted, yielding a larger beam scanning range close
to the simulated value.
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Fig. 6.51 Phase and LC
permittivity distribution for
an array width of 32 unit
cells and a radiation angle of
20◦ at 27.4 GHz
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Concluding from the phase tuning range in Fig. 6.45, with five unit cell layers in
propagation direction the possible phase tuning Δφ becomes larger than 2π and by
exploiting the phase periodicity, the aperture size does not limit the maximum beam
scanning angle. A Fresnel lens profile with the phase gradient (6.3) can be introduced
over the fishnet aperture yielding a maximum beam scanning range of ±90◦. As an
example, such a phase profile applied is to a 32 × 32 × 5 fishnet array. It consists
of the unit cell geometry depicted in 6.48. For a radiation angle of 20◦, the phase
profile according to (6.3) and the required LC permittivity in each unit cell column
is shown in Fig. 6.51. The permittivity in each column is within the material tuning
range of the employed LC. Hence, the phase is increased linearly over the aperture
and is wrapped at multiples of 2π .

The simulated electric field distribution of this array configuration with a Fresnel
phase profile is presented in Fig. 6.52. The normal incident beam is refracted by 20◦.
Due to the increased aperture size, the approximation of a plane wavefront is better
than for the small array consisting of 8 × 8 unit cells.

Since each unit cell column can be addressed independently, arbitrary phase pro-
files can be realized as well. That way, not only beam scanning, but also beam form-
ing is possible, e.g. to create gradient-index lenses or transmit arrays with a tunable
effective concave or convex shape to focus an incident in one point. Furthermore, the
phase distribution can be varied to adaptively optimize the shape of the transmitted

Fig. 6.52 Simulated electric near field distribution of the five-layer fishnet array with a Fresnel
profile at 27.4 GHz
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wave for a desired application, e.g. for multiple beam patterns or to optimize the
pattern of different excitation sources.
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Chapter 7
Conclusion and Outlook

Voltage tunable metamaterials for microwave frequencies have been investigated,
designed, and manufactured within this work. The concept of metamaterials, where
the electromagnetic response of sub-wavelength unit cells, which are arranged in
periodic lattices, is described by effective material parameters, has been applied to
design different planar and three-dimensional unit cell configurations considering
their realizability and technological constraints. Based on the presented approaches,
metamaterials with independently voltage tunable electric and magnetic properties
can be designed.

A major part of the presented work has been focused on the description of peri-
odic structures in terms of dispersion parameters and transmission line models.
This allows a description of lattices consisting of complex sub-wavelength geome-
trieswith dispersion parameters such as effectivematerial parameters or transmission
line parameters known from conventional materials. However, due to the particle
size, which cannot generally be neglected, spatial dispersion has to be taken into
account. This discretization effect on effective material parameters and transmis-
sion line parameters has been derived. Furthermore, it has been demonstrated that,
although the transmission line model of a unit cell can consist of any combination of
resistive and reactive elements, only a subset of possible combinations is physically
realizable. Based on causality and passivity conditions, a general frequency response
of material parameters has been derived. These conditions have been transformed
into the transmission line representation yielding a general model of physically real-
izable unit cell configurations. Due to the equivalence between effective material
parameters and transmission line parameters, these considerations are valid for one-
dimensional artificial transmission lines as well as for two- and three-dimensional
periodic arrays. Hence, concepts such as transmission line transformation, or electric
and magnetic response described by material parameters can be utilized, yielding an
abstract representation of the unit cell independent of its actual physical implemen-
tation. Consequently, at the beginning of a design process, theoretical considerations
can be done by means of dispersion analysis and dispersion engineering. Thereafter,
the actual geometry to implement the required dispersion is determined.
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The relation between dispersion parameters and the implementation of a unit cell
is an important factor in the design process. Hence, different methods to extract
effective material parameters from existing unit cells have been compared. Meth-
ods that are based on the evaluation of scattering parameters can be employed to
determine dispersion parameters of manufactured and measured structures. Addi-
tionally, methods like scattering parameter simulations with multiple modes or field
averaging methods, that have been extended within this work, can be used to obtain
dispersion properties from fullwave simulations. Due to computational constraints
and the sub-wavelength size of unit cells with a high level of geometrical detail, full-
wave simulations of complex arrays are time consuming or even not possible so that
simulations commonly are performed for a single unit cell. The resulting dispersion
parameters are used to approximately predict the response of the array. However,
it has been demonstrated that with eigenmode methods and higher order scattering
parameters, simulations can be performed on the basis of a single unit cell without
losing accuracy compared to simulations of large arrays. Hence, the computational
effort for periodic structures can be significantly reduced.

A method to predict farfield radiation patterns of large periodic antennas like
leaky-wave antennas or gradient-index metamaterials has been developed within
this work. The method is based on the evaluation of propagating eigenmodes by
means of fullwave eigenmode simulation of a single unit cell. Compared to conven-
tional methods, where an assumption of the field distribution of a unit cell has to be
made, the developed method shows a higher accuracy since it considers higher order
mode coupling between adjacent unit cells and the actual electric and magnetic field
distribution of the unit cell. Furthermore, the evaluation of eigenmodes and the cor-
responding field distribution is performed for a single unit cell so that the simulation
effort is reduced drastically.

Based on the presented theoretical foundations and methods, different planar and
three-dimensionalmetamaterialswith voltage tunable properties have been designed.
Realizability of the unit cell has been an important factor in the design process of
all configurations. A general objective has been the application of the presented unit
cells for complex artificial transmission lines and two- and three-dimensional con-
figurations yielding strict requirements for the unit cell, especially in terms of the
biasing network and its complexity. Considering this aspect, several planar transmis-
sion line metamaterials with tunable dispersion properties have been designed for
different microwave frequency bands up to 30GHz. A double series transmission
line has been designed for 2.4GHz. It exhibits a transmission band, which can be
configured to exhibit positive or negative phase velocity. It has been demonstrated
that by voltage tuning it is possible to change the sign of phase velocity as well
as the cutoff frequencies of the transmission band. Furthermore, artificial transmis-
sion lines, which use liquid crystals as voltage tunable dielectric, have been realized
for frequencies of 16 and 30GHz. The unit cells are based on open split-ring res-
onators and the double series unit cell configuration. With a prototype at 30GHz, the
impact of the biasing network on the frequency response has been investigated and
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independent voltage tuning of the electric and magnetic response has been demon-
strated. Potential applications include continuously voltage tunable filters, phase
shifters, leaky-wave antennas, or matching networks based on artificial transmission
lines. Due to the employment of discrete, concentrated circuit elements, these artifi-
cial lines yield a size reduction compared to conventional transmission line structures.
Despite the use of lumped elements, parameters such as propagation constant and
characteristic impedance known from transmission line theory, and concepts based
on the transmission line transformation, can be utilized in the design process.

Finally, three-dimensional unit cell configurations based on split-ring resonators,
omega resonators, and fishnet metamaterials have been investigated and voltage
tunability has been introduced. Arrays of split-ring resonators and omega resonators
have been loaded with varactor diodes to tune their magnetic response for microwave
frequencies between 1 and 3GHz. Due to the biasing network that is mainly inte-
grated within the RF structure, it is possible to reduce parasitic effects introduced by
the DC voltage distribution network. Hence, three-dimensional metamaterials with
tunable properties can be realized where the impact of the biasing network merely
influences the RF response. An application of such three-dimensional metamaterial
configurations is the gradient-index fishnet structure that has been developed and
implemented in this work. By employing liquid crystal material as dielectric layer
in a fishnet metamaterial, the magnetic RF response and hence, the phase response
can be locally controlled by a tuning voltage of up to 20V and beam scanning of an
incident wave can be obtained. This has been experimentally demonstrated with a
proof-of-concept prototype that consists of 5×5 transversal unit cells at a frequency
of 27.4GHz yielding a beam scanning range of ±5 ◦. This scanning angle is limited
by the array size of the manufactured prototype. However, theoretical analysis and
fullwave simulations have shown that the general concept of artificial gradient-index
lenses as well as the gradient-index fishnet can be applied for larger arrays, where
by applying a Fresnel profile, arbitrary scanning angles can be achieved. Addition-
ally, by applying a non-constant phase gradient, further transformations like beam
focusing of defocusing, or beam forming are possible. Both, the fishnet structure and
liquid crystals, are usable for frequencies up to the optics regime. Hence, the pre-
sented concepts and results for voltage tunable components are a promising approach
for implementations in the mm- and THz-range. A further field of study is the imple-
mentation of a fishnet metamaterial with a polarization independent unit cell where,
by introducing a tuning voltage matrix similar to LC displays, each unit cell can be
addressed independently enabling beam scanning in the complete half-space behind
the artificial lens. Moreover, a modification of the unit cell could enable voltage con-
trol of the magnetic and electric response independently of each other. Hence, not
only the phase distribution, but also the impedance distribution over the aperture
could be controlled so that reconfigurable lenses with perfect matching could be real-
ized. Potential applications of such tunable three-dimensional metamaterials include
beam steering and beam forming for imaging or communication systems for the
mm- and THz-regime. Furthermore, the application of the fishnet as continuously
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tunable frequency selective surface is possible even with a small longitudinal number
of unit cell layers. Using transformation optics, i.e. the relation between trajectories
of waves and the spatial variation of material parameters, complex transformations
of an incident wave are possible and the realization of components beyond artificial
gradient-index lenses, e.g. components with tunable properties for cloaking and field
concentration, are conceivable.



Appendix

A.1 Kramers–Kronig Relation for Wavenumber

Assuming that the magnetic and electric susceptibility

χm(ω) = χm(ω)′ − jχ ′′
m(ω), (A.1)

χe(ω) = χe(ω)′ − jχ ′′
e (ω) (A.2)

describe the causal response to a magnetic and electric field in the frequency domain,
then χ ′(ω) and χ ′′(ω) is an even and odd function, respectively, so that

χm(−ω) = χm(ω)∗, χe(−ω) = χe(ω)∗. (A.3)

With the susceptibilities, the square of the wavenumber is

k2(ω) = k0(ω)2 [1 + χm(ω)] [1 + χe(ω)] (A.4)

and hence,

k2(ω)

k2
0(ω)

= 1 + χ ′
m + χ ′

e + χ ′
mχ ′

e − χ ′′
mχ ′′

e − j (χ ′′
m + χ ′′

e + χ ′
mχ ′′

e + χ ′′
mχ ′

e). (A.5)

The product of two even functions (two real parts) and the product of two odd
functions (two imaginary parts) yields an even function while the product of an odd
and an even function (product of a real and imaginary part) yields an odd function.
Hence, with (A.3), the real part in (A.5) is an even function and the imaginary part
an odd function and it shows the same symmetry

k2(ω)

k2
0(ω)

=
(

k2(−ω)

k2
0(−ω)

)∗
. (A.6)

© Springer International Publishing Switzerland 2016
M. Maasch, Tunable Microwave Metamaterial Structures, Springer Theses,
DOI 10.1007/978-3-319-28179-7

133



134 Appendix

Since (A.3) and (A.6) are a consequence of Titchmarsh’s theorem [1, 2], it has to
hold

k2(ω)

k2
0(ω)

= 1 − j

π

 ∞

−∞
k2(Ω)/k2

0(Ω)

ω − Ω
dΩ. (A.7)

With the approximation

√
1 + a ≈ 1 + a

2
for |a| � 1, (A.8)

the wavenumber for small susceptibilities can be approximated by

k(ω) ≈ k0(ω)

[
1 + χm(ω)

2

] [
1 + χe(ω)

2

]
(A.9)

which yields
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(A.10)

It shows the same symmetry properties for the real and imaginary part as (A.5) so
that the Kramers–Kronig relation has to hold for the approximation of the refractive
index:

k(ω)

k0(ω)
≈ 1 − j

π

 ∞

−∞
k(Ω)/k0(Ω)

ω − Ω
dΩ. (A.11)

A.2 Relation Between Two-Port Parameters

Figure A.1 shows the port-currents and voltages as they are used for all two-port
networks in this work. In the following, important relations between different matrix
representations are summarized.

Fig. A.1 Definition of
voltages and currents for a
two-port network

V1 V2

I1 I2
a1

b1

a2

b2

two-port
network
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A.2.1 Chain Parameters of a Transmission Line

The chain parameter matrix A with the voltages and currents as defined in Fig. A.1
for a transmission line section of the length l follows

(
V1

I1

)
= A ·

(
V2

−I2

)
=

(
cosh γ l Zc sinh γ l

1
Zc

sinh γ l cosh γ l

)
·
(

V2

−I2

)
. (A.12)

A.2.2 Relation Between Transmission Line Parameters
and Scattering Parameters

The generalized scattering parameters based on the definition of complex power
waves [3–6]

ai = Vi + Z0i Ii

2
√

Re{Z0i } , (A.13)

bi = Vi − Z∗
0i Ii

2
√

Re{Z0i } (A.14)

are calculated from the transmission line parameters by

S11 = b1

a1
=

(Z02 − Z∗
01) cosh(γ l) +

(
Zc − Z∗

01 Z02

Zc

)
sinh(γ l)

(Z01 + Z02) cosh(γ l) +
(

Zc + Z∗
01 Z02

Zc

)
sinh(γ l)

, (A.15)

S12 = b1

a2
= S21 = b2

a1

= 2
√

Re{Z01}Re{Z02}
(Z01 + Z02) cosh(γ l) +

(
Zc + Z∗

01 Z02

Zc

)
sinh(γ l)

, (A.16)

S22 = b2

a2
=

(Z01 − Z∗
02) cosh(γ l) +

(
Zc − Z01 Z∗

02
Zc

)
sinh(γ l)

(Z01 + Z02) cosh(γ l) +
(

Zc + Z∗
01 Z02

Zc

)
sinh(γ l)

. (A.17)

If not noted otherwise in this work, the reference impedance Z0i is purely real so
that the scattering parameters based on the power wave definition and the scattering
parameters based on the traveling wave definition [7, 8] are equivalent.
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Fig. A.2 Two-port circuit: a
in Π -configuration, b in
T-configuration

(a) (b)
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I1 Z1 Z3

Y2V2
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I1 Z2

Y1 Y3

A.2.3 Two-Port Parameters of Circuits
in Π- and T-Configuration

The unit cell configurations investigated in this work can be represented by a two-port
circuit in Π - or T-configuration (Fig. A.2). They yield the impedance and admittance
matrix

(
I1

I2

)
= YΠ ·

(
V1

V2

)
=

(
Y1 + 1/Z2 −1/Z2

−1/Z2 1/Z2 + Y3

)
·
(

V1

V2

)
, (A.18)

(
V1

V2

)
= ZT ·

(
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I2

)
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Z1 + 1/Y2 1/Y2

1/Y2 1/Y2 + Z3

)
·
(

I1

I2

)
. (A.19)

and the chain parameter matrices

AΠ =
(

1 + Z2Y3 Z2

−(Y1 + Y1 Z2Y3) 1 + Y1 Z2

)
, (A.20)

AT =
(

1 + Z1Y2 Z1 + Z1Y2 Z3

Y2 1 + Y2 Z3

)
. (A.21)

A.2.4 Two-Port Representation of a Transformer

A magnetic coupling between two inductors can be represented by the transformer
with the coupling factor S in Fig. A.3a. The T-configuration of the transformer in
Fig. A.3b takes the mutual inductance

M2 = S2 L1L2 (A.22)

into account.

Fig. A.3 a Transformer
with two coupled inductors.
b T-configuration with the
mutual inductance M V1 V2

I1 I2
S

L1 L2

(a) (b)

V2

I2

V1

I1
L1 −M L2 −M

M
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A.3 Photolithography Steps

In this work, different voltage tunable structures are manufactured on glass substrates.
The main lithography steps, following the works [9–12], are:

• evaporation of NiCr and Au on glass substrate
• RF structure:

– AZ4533 photo resist mask for Au plating: spin coat, softbake
– exposure of mask for RF structure, development with AZ400K
– hardbake (result: Fig. A.4a)
– electroplating of Au
– remove photo resist layer (result: Fig. A.4b)

• resistive biasing network:

– AZ4533 photo resist mask for NiCr: spin coat, softbake
– exposure of mask for bias lines, development with AZ400K
– hardbake (result: Fig. A.4c)

• Selective wet etching:

– Au etching
– NiCr etching
– remove photo resist layer
– Au etching (result: Fig. A.4d)

If LC is used as tunable material, following steps are the processing and rubbing
of the polyimide alignment layer and glueing of glass substrates to form the LC
cavity.

AZ4533

Au (evaporated)

NiCr (evaporated)

glass substrate

Au (plated)

(a) (b)

(c) (d)

Fig. A.4 Glass substrates with Au and NiCr metallization after different manufacturing process
steps: a photo resist for Au plating, b electroplated Au layer, c photo resist for etching of Au and
NiCr, d final structure after wet etching
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